The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of this vignette is to explain the older resamplers:
ResamplingVariableSizeTrainCV and ResamplingSameOtherCV, which
output some data which are useful for visualizing the train/test
splits. If you do not want to visualize the train/test splits, then it
is recommended to instead use the newer resampler,
ResamplingSameOtherSizesCV (see other vignette).
The goal of thie section is to explain how to quantify the extent to which it is possible to train on one data subset, and predict on another data subset. This kind of problem occurs frequently in many different problem domains:
The ideas are similar to my previous blog posts about how to do this
in
python
and R. Below
we explain how to use mlr3resampling for this purpose, in simulated
regression and classification problems. To use this method in
real data, the important sections to read below are named “Benchmark:
computing test error,” which show how to create these cross-validation
experiments using mlr3 code.
We begin by generating some data which can be used with regression algorithms. Assume there is a data set with some rows from one person, some rows from another,
N <- 300
library(data.table)
set.seed(1)
abs.x <- 2
reg.dt <- data.table(
  x=runif(N, -abs.x, abs.x),
  person=rep(1:2, each=0.5*N))
reg.pattern.list <- list(
  easy=function(x, person)x^2,
  impossible=function(x, person)(x^2+person*3)*(-1)^person)
reg.task.list <- list()
for(task_id in names(reg.pattern.list)){
  f <- reg.pattern.list[[task_id]]
  yname <- paste0("y_",task_id)
  reg.dt[, (yname) := f(x,person)+rnorm(N)][]
  task.dt <- reg.dt[, c("x","person",yname), with=FALSE]
  reg.task <- mlr3::TaskRegr$new(
    task_id, task.dt, target=yname)
  reg.task$col_roles$subset <- "person"
  reg.task$col_roles$stratum <- "person"
  reg.task$col_roles$feature <- "x"
  reg.task.list[[task_id]] <- reg.task
}
reg.dt
#>               x person      y_easy y_impossible
#>           <num>  <int>       <num>        <num>
#>   1: -0.9379653      1  1.32996609    -2.918082
#>   2: -0.5115044      1  0.24307692    -3.866062
#>   3:  0.2914135      1 -0.23314657    -3.837799
#>   4:  1.6328312      1  1.73677545    -7.221749
#>   5: -1.1932723      1 -0.06356159    -5.877792
#>  ---                                           
#> 296:  0.7257701      2 -2.48130642     5.180948
#> 297: -1.6033236      2  1.20453459     9.604312
#> 298: -1.5243898      2  1.89966190     7.511988
#> 299: -1.7982414      2  3.47047566    11.035397
#> 300:  1.7170157      2  0.60541972    10.719685
The table above shows some simulated data for two regression problems:
mlr3::TaskRegr line which tells mlr3 what data set to use, what is
the target column, and what is the subset/stratum column.First we reshape the data using the code below,
(reg.tall <- nc::capture_melt_single(
  reg.dt,
  task_id="easy|impossible",
  value.name="y"))
#>               x person    task_id           y
#>           <num>  <int>     <char>       <num>
#>   1: -0.9379653      1       easy  1.32996609
#>   2: -0.5115044      1       easy  0.24307692
#>   3:  0.2914135      1       easy -0.23314657
#>   4:  1.6328312      1       easy  1.73677545
#>   5: -1.1932723      1       easy -0.06356159
#>  ---                                         
#> 596:  0.7257701      2 impossible  5.18094849
#> 597: -1.6033236      2 impossible  9.60431191
#> 598: -1.5243898      2 impossible  7.51198770
#> 599: -1.7982414      2 impossible 11.03539747
#> 600:  1.7170157      2 impossible 10.71968480
The table above is a more convenient form for the visualization which we create using the code below,
if(require(animint2)){
  my_theme <- theme_bw(20)
  theme_set(my_theme)
  ggplot()+
    geom_point(aes(
      x, y),
      data=reg.tall)+
    facet_grid(
      task_id ~ person,
      labeller=label_both,
      space="free",
      scales="free")+
    scale_y_continuous(
      breaks=seq(-100, 100, by=2))
}
#> Le chargement a nécessité le package : animint2
#> Registered S3 methods overwritten by 'animint2':
#>   method                   from   
#>   [.uneval                 ggplot2
#>   drawDetails.zeroGrob     ggplot2
#>   grid.draw.absoluteGrob   ggplot2
#>   grobHeight.absoluteGrob  ggplot2
#>   grobHeight.zeroGrob      ggplot2
#>   grobWidth.absoluteGrob   ggplot2
#>   grobWidth.zeroGrob       ggplot2
#>   grobX.absoluteGrob       ggplot2
#>   grobY.absoluteGrob       ggplot2
#>   heightDetails.titleGrob  ggplot2
#>   heightDetails.zeroGrob   ggplot2
#>   makeContext.dotstackGrob ggplot2
#>   print.element            ggplot2
#>   print.ggplot2_bins       ggplot2
#>   print.rel                ggplot2
#>   print.theme              ggplot2
#>   print.uneval             ggplot2
#>   widthDetails.titleGrob   ggplot2
#>   widthDetails.zeroGrob    ggplot2
#> 
#> Attachement du package : 'animint2'
#> Les objets suivants sont masqués depuis 'package:ggplot2':
#> 
#>     %+%, %+replace%, Coord, CoordCartesian, CoordFixed, CoordFlip,
#>     CoordMap, CoordPolar, CoordQuickmap, CoordTrans, Geom, GeomAbline,
#>     GeomAnnotationMap, GeomArea, GeomBar, GeomBlank, GeomContour,
#>     GeomCrossbar, GeomCurve, GeomCustomAnn, GeomDensity, GeomDensity2d,
#>     GeomDotplot, GeomErrorbar, GeomErrorbarh, GeomHex, GeomHline,
#>     GeomLabel, GeomLine, GeomLinerange, GeomLogticks, GeomMap,
#>     GeomPath, GeomPoint, GeomPointrange, GeomPolygon, GeomRaster,
#>     GeomRasterAnn, GeomRect, GeomRibbon, GeomRug, GeomSegment,
#>     GeomSmooth, GeomSpoke, GeomStep, GeomText, GeomTile, GeomViolin,
#>     GeomVline, Position, PositionDodge, PositionFill, PositionIdentity,
#>     PositionJitter, PositionJitterdodge, PositionNudge, PositionStack,
#>     Scale, ScaleContinuous, ScaleContinuousDate,
#>     ScaleContinuousDatetime, ScaleContinuousIdentity,
#>     ScaleContinuousPosition, ScaleDiscrete, ScaleDiscreteIdentity,
#>     ScaleDiscretePosition, Stat, StatBin, StatBin2d, StatBindot,
#>     StatBinhex, StatContour, StatCount, StatDensity, StatDensity2d,
#>     StatEcdf, StatEllipse, StatFunction, StatIdentity, StatQq,
#>     StatSmooth, StatSum, StatSummary, StatSummary2d, StatSummaryBin,
#>     StatSummaryHex, StatUnique, StatYdensity, aes, aes_, aes_all,
#>     aes_auto, aes_q, aes_string, annotate, annotation_custom,
#>     annotation_logticks, annotation_map, annotation_raster,
#>     as_labeller, autoplot, benchplot, borders, calc_element,
#>     continuous_scale, coord_cartesian, coord_equal, coord_fixed,
#>     coord_flip, coord_map, coord_munch, coord_polar, coord_quickmap,
#>     coord_trans, cut_interval, cut_number, cut_width, discrete_scale,
#>     draw_key_abline, draw_key_blank, draw_key_crossbar,
#>     draw_key_dotplot, draw_key_label, draw_key_path, draw_key_point,
#>     draw_key_pointrange, draw_key_polygon, draw_key_rect,
#>     draw_key_smooth, draw_key_text, draw_key_vline, draw_key_vpath,
#>     economics, economics_long, element_blank, element_grob,
#>     element_line, element_rect, element_text, expand_limits,
#>     facet_grid, facet_null, facet_wrap, fortify, geom_abline,
#>     geom_area, geom_bar, geom_bin2d, geom_blank, geom_contour,
#>     geom_count, geom_crossbar, geom_curve, geom_density,
#>     geom_density2d, geom_density_2d, geom_dotplot, geom_errorbar,
#>     geom_errorbarh, geom_freqpoly, geom_hex, geom_histogram,
#>     geom_hline, geom_jitter, geom_label, geom_line, geom_linerange,
#>     geom_map, geom_path, geom_point, geom_pointrange, geom_polygon,
#>     geom_qq, geom_raster, geom_rect, geom_ribbon, geom_rug,
#>     geom_segment, geom_smooth, geom_spoke, geom_step, geom_text,
#>     geom_tile, geom_violin, geom_vline, gg_dep, ggplot, ggplotGrob,
#>     ggplot_build, ggplot_gtable, ggsave, ggtitle, guide_colorbar,
#>     guide_colourbar, guide_legend, guides, is.Coord, is.facet,
#>     is.ggplot, is.theme, label_both, label_bquote, label_context,
#>     label_parsed, label_value, label_wrap_gen, labeller, labs,
#>     last_plot, layer, layer_data, layer_grob, layer_scales, lims,
#>     map_data, margin, mean_cl_boot, mean_cl_normal, mean_sdl, mean_se,
#>     median_hilow, position_dodge, position_fill, position_identity,
#>     position_jitter, position_jitterdodge, position_nudge,
#>     position_stack, presidential, qplot, quickplot, rel,
#>     remove_missing, resolution, scale_alpha, scale_alpha_continuous,
#>     scale_alpha_discrete, scale_alpha_identity, scale_alpha_manual,
#>     scale_color_brewer, scale_color_continuous, scale_color_discrete,
#>     scale_color_distiller, scale_color_gradient, scale_color_gradient2,
#>     scale_color_gradientn, scale_color_grey, scale_color_hue,
#>     scale_color_identity, scale_color_manual, scale_colour_brewer,
#>     scale_colour_continuous, scale_colour_date, scale_colour_datetime,
#>     scale_colour_discrete, scale_colour_distiller,
#>     scale_colour_gradient, scale_colour_gradient2,
#>     scale_colour_gradientn, scale_colour_grey, scale_colour_hue,
#>     scale_colour_identity, scale_colour_manual, scale_fill_brewer,
#>     scale_fill_continuous, scale_fill_date, scale_fill_datetime,
#>     scale_fill_discrete, scale_fill_distiller, scale_fill_gradient,
#>     scale_fill_gradient2, scale_fill_gradientn, scale_fill_grey,
#>     scale_fill_hue, scale_fill_identity, scale_fill_manual,
#>     scale_linetype, scale_linetype_continuous, scale_linetype_discrete,
#>     scale_linetype_identity, scale_linetype_manual, scale_radius,
#>     scale_shape, scale_shape_continuous, scale_shape_discrete,
#>     scale_shape_identity, scale_shape_manual, scale_size,
#>     scale_size_area, scale_size_continuous, scale_size_date,
#>     scale_size_datetime, scale_size_discrete, scale_size_identity,
#>     scale_size_manual, scale_x_continuous, scale_x_date,
#>     scale_x_datetime, scale_x_discrete, scale_x_log10, scale_x_reverse,
#>     scale_x_sqrt, scale_y_continuous, scale_y_date, scale_y_datetime,
#>     scale_y_discrete, scale_y_log10, scale_y_reverse, scale_y_sqrt,
#>     should_stop, stat_bin, stat_bin2d, stat_bin_2d, stat_bin_hex,
#>     stat_binhex, stat_contour, stat_count, stat_density,
#>     stat_density2d, stat_density_2d, stat_ecdf, stat_ellipse,
#>     stat_function, stat_identity, stat_qq, stat_smooth, stat_spoke,
#>     stat_sum, stat_summary, stat_summary2d, stat_summary_2d,
#>     stat_summary_bin, stat_summary_hex, stat_unique, stat_ydensity,
#>     theme, theme_bw, theme_classic, theme_dark, theme_get, theme_gray,
#>     theme_grey, theme_light, theme_linedraw, theme_minimal,
#>     theme_replace, theme_set, theme_update, theme_void,
#>     transform_position, update_geom_defaults, update_labels,
#>     update_stat_defaults, waiver, xlab, xlim, ylab, ylim, zeroGrob
In the simulated data above, we can see that
In the code below, we define a K-fold cross-validation experiment.
(reg_same_other <- mlr3resampling::ResamplingSameOtherCV$new())
#> 
#> ── <ResamplingSameOtherCV> : Same versus Other Cross-Validation ────────────────
#> • Iterations:
#> • Instantiated: FALSE
#> • Parameters: folds=3
In the code below, we define two learners to compare,
(reg.learner.list <- list(
  if(requireNamespace("rpart"))mlr3::LearnerRegrRpart$new(),
  mlr3::LearnerRegrFeatureless$new()))
#> [[1]]
#> 
#> ── <LearnerRegrRpart> (regr.rpart): Regression Tree ────────────────────────────
#> • Model: -
#> • Parameters: xval=0
#> • Packages: mlr3 and rpart
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, selected_features, and weights
#> • Other settings: use_weights = 'use'
#> 
#> [[2]]
#> 
#> ── <LearnerRegrFeatureless> (regr.featureless): Featureless Regression Learner ─
#> • Model: -
#> • Parameters: robust=FALSE
#> • Packages: mlr3 and stats
#> • Predict Types: [response], se, and quantiles
#> • Feature Types: logical, integer, numeric, character, factor, ordered,
#> POSIXct, and Date
#> • Encapsulation: none (fallback: -)
#> • Properties: featureless, importance, missings, selected_features, and weights
#> • Other settings: use_weights = 'use'
In the code below, we define the benchmark grid, which is all combinations of tasks (easy and impossible), learners (rpart and featureless), and the one resampling method.
(reg.bench.grid <- mlr3::benchmark_grid(
  reg.task.list,
  reg.learner.list,
  reg_same_other))
#>          task          learner    resampling
#>        <char>           <char>        <char>
#> 1:       easy       regr.rpart same_other_cv
#> 2:       easy regr.featureless same_other_cv
#> 3: impossible       regr.rpart same_other_cv
#> 4: impossible regr.featureless same_other_cv
In the code below, we execute the benchmark experiment (in parallel using the multisession future plan).
if(FALSE){#for CRAN.
  if(require(future))plan("multisession")
}
if(require(lgr))get_logger("mlr3")$set_threshold("warn")
#> Le chargement a nécessité le package : lgr
#> 
#> Attachement du package : 'lgr'
#> L'objet suivant est masqué depuis 'package:ggplot2':
#> 
#>     Layout
(reg.bench.result <- mlr3::benchmark(
  reg.bench.grid, store_models = TRUE))
#> 
#> ── <BenchmarkResult> of 72 rows with 4 resampling run ──────────────────────────
#>  nr    task_id       learner_id resampling_id iters warnings errors
#>   1       easy       regr.rpart same_other_cv    18        0      0
#>   2       easy regr.featureless same_other_cv    18        0      0
#>   3 impossible       regr.rpart same_other_cv    18        0      0
#>   4 impossible regr.featureless same_other_cv    18        0      0
The code below computes the test error for each split,
reg.bench.score <- mlr3resampling::score(reg.bench.result)
reg.bench.score[1]
#>    train.subsets test.fold test.subset person iteration                  test
#>           <char>     <int>       <int>  <int>     <int>                <list>
#> 1:           all         1           1      1         1  1, 3, 5, 6,12,13,...
#>                    train                                uhash    nr
#>                   <list>                               <char> <int>
#> 1:  4, 7, 9,10,18,20,... 7c11294c-bd1a-46ae-98ff-c20f08a426ce     1
#>               task task_id                       learner learner_id
#>             <list>  <char>                        <list>     <char>
#> 1: <TaskRegr:easy>    easy <LearnerRegrRpart:regr.rpart> regr.rpart
#>                 resampling resampling_id  prediction_test regr.mse algorithm
#>                     <list>        <char>           <list>    <num>    <char>
#> 1: <ResamplingSameOtherCV> same_other_cv <PredictionRegr> 1.638015     rpart
The code below visualizes the resulting test accuracy numbers.
if(require(animint2)){
  ggplot()+
    scale_x_log10()+
    geom_point(aes(
      regr.mse, train.subsets, color=algorithm),
      shape=1,
      data=reg.bench.score)+
    facet_grid(
      task_id ~ person,
      labeller=label_both,
      scales="free")
}
It is clear from the plot above that
The code below can be used to create an interactive data visualization which allows exploring how different functions are learned during different splits.
inst <- reg.bench.score$resampling[[1]]$instance
rect.expand <- 0.3
grid.dt <- data.table(x=seq(-abs.x, abs.x, l=101), y=0)
grid.task <- mlr3::TaskRegr$new("grid", grid.dt, target="y")
pred.dt.list <- list()
point.dt.list <- list()
for(score.i in 1:nrow(reg.bench.score)){
  reg.bench.row <- reg.bench.score[score.i]
  task.dt <- data.table(
    reg.bench.row$task[[1]]$data(),
    reg.bench.row$resampling[[1]]$instance$id.dt)
  names(task.dt)[1] <- "y"
  set.ids <- data.table(
    set.name=c("test","train")
  )[
  , data.table(row_id=reg.bench.row[[set.name]][[1]])
  , by=set.name]
  i.points <- set.ids[
    task.dt, on="row_id"
  ][
    is.na(set.name), set.name := "unused"
  ]
  point.dt.list[[score.i]] <- data.table(
    reg.bench.row[, .(task_id, iteration)],
    i.points)
  i.learner <- reg.bench.row$learner[[1]]
  pred.dt.list[[score.i]] <- data.table(
    reg.bench.row[, .(
      task_id, iteration, algorithm
    )],
    as.data.table(
      i.learner$predict(grid.task)
    )[, .(x=grid.dt$x, y=response)]
  )
}
(pred.dt <- rbindlist(pred.dt.list))
#>          task_id iteration   algorithm     x        y
#>           <char>     <int>      <char> <num>    <num>
#>    1:       easy         1       rpart -2.00 3.557968
#>    2:       easy         1       rpart -1.96 3.557968
#>    3:       easy         1       rpart -1.92 3.557968
#>    4:       easy         1       rpart -1.88 3.557968
#>    5:       easy         1       rpart -1.84 3.557968
#>   ---                                                
#> 7268: impossible        18 featureless  1.84 7.204232
#> 7269: impossible        18 featureless  1.88 7.204232
#> 7270: impossible        18 featureless  1.92 7.204232
#> 7271: impossible        18 featureless  1.96 7.204232
#> 7272: impossible        18 featureless  2.00 7.204232
(point.dt <- rbindlist(point.dt.list))
#>           task_id iteration set.name row_id           y          x  fold person
#>            <char>     <int>   <char>  <int>       <num>      <num> <int>  <int>
#>     1:       easy         1     test      1  1.32996609 -0.9379653     1      1
#>     2:       easy         1    train      2  0.24307692 -0.5115044     3      1
#>     3:       easy         1     test      3 -0.23314657  0.2914135     1      1
#>     4:       easy         1    train      4  1.73677545  1.6328312     2      1
#>     5:       easy         1     test      5 -0.06356159 -1.1932723     1      1
#>    ---                                                                         
#> 21596: impossible        18    train    296  5.18094849  0.7257701     1      2
#> 21597: impossible        18    train    297  9.60431191 -1.6033236     1      2
#> 21598: impossible        18     test    298  7.51198770 -1.5243898     3      2
#> 21599: impossible        18    train    299 11.03539747 -1.7982414     1      2
#> 21600: impossible        18     test    300 10.71968480  1.7170157     3      2
#>        subset display_row
#>         <int>       <int>
#>     1:      1           1
#>     2:      1         101
#>     3:      1           2
#>     4:      1          51
#>     5:      1           3
#>    ---                   
#> 21596:      2         198
#> 21597:      2         199
#> 21598:      2         299
#> 21599:      2         200
#> 21600:      2         300
set.colors <- c(
  train="#1B9E77",
  test="#D95F02",
  unused="white")
algo.colors <- c(
  featureless="blue",
  rpart="red")
make_person_subset <- function(DT){
  DT[, "person/subset" := person]
}
make_person_subset(point.dt)
make_person_subset(reg.bench.score)
#> Warning in `[.data.table`(DT, , `:=`("person/subset", person)): A shallow copy
#> of this data.table was taken so that := can add or remove 1 columns by
#> reference. At an earlier point, this data.table was copied by R (or was created
#> manually using structure() or similar). Avoid names<- and attr<- which in R
#> currently (and oddly) may copy the whole data.table. Use set* syntax instead to
#> avoid copying: ?set, ?setnames and ?setattr. It's also not unusual for
#> data.table-agnostic packages to produce tables affected by this issue. If this
#> message doesn't help, please report your use case to the data.table issue
#> tracker so the root cause can be fixed or this message improved.
if(require(animint2)){
  viz <- animint(
    title="SOAK algorithm: train/predict on subsets, regression",
    video="https://vimeo.com/1053413000",
    pred=ggplot()+
      ggtitle("Predictions for selected train/test split")+
      theme_animint(height=400)+
      scale_fill_manual(values=set.colors)+
      geom_point(aes(
        x, y, fill=set.name),
        showSelected="iteration",
        size=3,
        help="One dot for each train/test/unused data point.",
        shape=21,
        data=point.dt)+
      scale_color_manual(values=algo.colors)+
      geom_line(aes(
        x, y, color=algorithm,
        group=paste(algorithm, iteration)),
        help="One line for each learned prediction function.",
        showSelected="iteration",
        data=pred.dt)+
      facet_grid(
        task_id ~ `person/subset`,
        labeller=label_both,
        space="free",
        scales="free")+
      scale_x_continuous(
        "x = input/feature in regression")+
      scale_y_continuous(
        "y = output to predict in regression",
        breaks=seq(-100, 100, by=2)),
    err=ggplot()+
      ggtitle("Test error for each split")+
      theme_animint(height=400, width=350)+
      guides(fill="none")+
      scale_y_log10(
        "Mean squared error on test set")+
      scale_fill_manual(values=algo.colors)+
      scale_x_discrete(
        "People/subsets in train set")+
      geom_point(aes(
        train.subsets, regr.mse, fill=algorithm),
        help="One dot per test set and learning algorithm.",
        shape=1,
        size=5,
        stroke=2,
        color="black",
        color_off=NA,
        showSelected="algorithm",
        clickSelects="iteration",
        data=reg.bench.score)+
      facet_grid(
        task_id ~ `person/subset`,
        labeller=label_both,
        scales="free"),
    diagram=ggplot()+
      ggtitle("Select train/test split")+
      theme_animint(height=400, width=300)+
      facet_grid(
        . ~ train.subsets,
        scales="free",
        space="free")+
      scale_size_manual(values=c(subset=3, fold=1))+
      scale_color_manual(values=c(subset="orange", fold="grey50"))+
      geom_rect(aes(
        xmin=-Inf, xmax=Inf,
        color=rows,
        size=rows,
        ymin=display_row, ymax=display_end),
        help="One rect per chunk of data with common fold (grey) and subset (gold).",
        fill=NA,
        data=inst$viz.rect.dt)+
      scale_fill_manual(values=set.colors)+
      geom_text(aes(
        x=ifelse(rows=="subset", Inf, -Inf),
        y=(display_row+display_end)/2,
        hjust=ifelse(rows=="subset", 1, 0),
        label=paste0(rows, "=", ifelse(rows=="subset", subset, fold))),
        help="Text labels indicate chunks of data with common fold (grey) and subset (gold).",
        showSelected="rows",
        data=data.table(train.name="same", inst$viz.rect.dt))+
      geom_rect(aes(
        xmin=iteration-rect.expand, ymin=display_row,
        xmax=iteration+rect.expand, ymax=display_end,
        fill=set.name),
        help="One rect per chunk of data assigned to train/test set in cross-validation.",
        alpha=0.5,
        alpha_off=0.5,
        color="black",
        color_off=NA,
        clickSelects="iteration",
        data=inst$viz.set.dt)+
      scale_x_continuous(
        "Split number",
        breaks=c(1,6, 7,12, 13,18))+
      scale_y_continuous(
        "Row number"),
    source="https://github.com/tdhock/mlr3resampling/blob/main/vignettes/Older_resamplers.Rmd")
}
if(FALSE){
  animint2pages(viz, "2023-12-13-train-predict-subsets-regression")
}
If you are viewing this in an installed package or on CRAN, then there will be no data viz on this page, but you can view it on: https://tdhock.github.io/2023-12-13-train-predict-subsets-regression/
The previous section investigated a simulated regression problem, whereas in this section we simulate a binary classification problem. Assume there is a data set with some rows from one person, some rows from another,
N <- 200
library(data.table)
(full.dt <- data.table(
  label=factor(rep(c("spam","not spam"), l=N)),
  person=rep(1:2, each=0.5*N)
)[, signal := ifelse(label=="not spam", 0, 3)][])
#>         label person signal
#>        <fctr>  <int>  <num>
#>   1:     spam      1      3
#>   2: not spam      1      0
#>   3:     spam      1      3
#>   4: not spam      1      0
#>   5:     spam      1      3
#>  ---                       
#> 196: not spam      2      0
#> 197:     spam      2      3
#> 198: not spam      2      0
#> 199:     spam      2      3
#> 200: not spam      2      0
Above each row has an person ID between 1 and 2. We can imagine a spam filtering system, that has training data for multiple people (here just two). Each row in the table above represents a message which has been labeled as spam or not, by one of the two people. Can we train on one person, and accurately predict on the other person? To do that we will need some features, which we generate/simulate below:
set.seed(1)
n.people <- length(unique(full.dt$person))
for(person.i in 1:n.people){
  use.signal.vec <- list(
    easy=rep(if(person.i==1)TRUE else FALSE, N),
    impossible=full.dt$person==person.i)
  for(task_id in names(use.signal.vec)){
    use.signal <- use.signal.vec[[task_id]]
    full.dt[
    , paste0("x",person.i,"_",task_id) := ifelse(
      use.signal, signal, 0
    )+rnorm(N)][]
  }
}
full.dt
#>         label person signal    x1_easy x1_impossible    x2_easy x2_impossible
#>        <fctr>  <int>  <num>      <num>         <num>      <num>         <num>
#>   1:     spam      1      3  2.3735462     3.4094018  1.0744410    -0.3410670
#>   2: not spam      1      0  0.1836433     1.6888733  1.8956548     1.5024245
#>   3:     spam      1      3  2.1643714     4.5865884 -0.6029973     0.5283077
#>   4: not spam      1      0  1.5952808    -0.3309078 -0.3908678     0.5421914
#>   5:     spam      1      3  3.3295078     0.7147645 -0.4162220    -0.1366734
#>  ---                                                                         
#> 196: not spam      2      0 -1.0479844    -0.9243128  0.7682782    -1.0293917
#> 197:     spam      2      3  4.4411577     1.5929138 -0.8161606     2.9890743
#> 198: not spam      2      0 -1.0158475     0.0450106 -0.4361069    -1.2249912
#> 199:     spam      2      3  3.4119747    -0.7151284  0.9047050     0.4038886
#> 200: not spam      2      0 -0.3810761     0.8652231 -0.7630863     1.1691226
In the table above, there are two sets of two features:
x1_easy), and
one is random noise (x2_easy), so the algorithm just needs to
learn to ignore the noise feature, and concentrate on the signal
feature. That should be possible given data from either person (same
signal in each person).x2_impossible. But if
the algorithm does not have access to that person, then the best it
can do is same as featureless (predict most frequent class label in
train data).Below we reshape the data to a table which is more suitable for visualization:
(scatter.dt <- nc::capture_melt_multiple(
  full.dt,
  column="x[12]",
  "_",
  task_id="easy|impossible"))
#>         label person signal    task_id         x1         x2
#>        <fctr>  <int>  <num>     <char>      <num>      <num>
#>   1:     spam      1      3       easy  2.3735462  1.0744410
#>   2: not spam      1      0       easy  0.1836433  1.8956548
#>   3:     spam      1      3       easy  2.1643714 -0.6029973
#>   4: not spam      1      0       easy  1.5952808 -0.3908678
#>   5:     spam      1      3       easy  3.3295078 -0.4162220
#>  ---                                                        
#> 396: not spam      2      0 impossible -0.9243128 -1.0293917
#> 397:     spam      2      3 impossible  1.5929138  2.9890743
#> 398: not spam      2      0 impossible  0.0450106 -1.2249912
#> 399:     spam      2      3 impossible -0.7151284  0.4038886
#> 400: not spam      2      0 impossible  0.8652231  1.1691226
Below we visualize the pattern for each person and feature type:
if(require(animint2)){
  ggplot()+
    geom_point(aes(
      x1, x2, color=label),
      shape=1,
      data=scatter.dt)+
    facet_grid(
      task_id ~ person,
      labeller=label_both)
}
In the plot above, it is apparent that
We use the code below to create a list of classification tasks, for use in the mlr3 framework.
class.task.list <- list()
for(task_id in c("easy","impossible")){
  feature.names <- grep(task_id, names(full.dt), value=TRUE)
  task.col.names <- c(feature.names, "label", "person")
  task.dt <- full.dt[, task.col.names, with=FALSE]
  this.task <- mlr3::TaskClassif$new(
    task_id, task.dt, target="label")
  this.task$col_roles$subset <- "person"
  this.task$col_roles$stratum <- c("person","label")
  this.task$col_roles$feature <- setdiff(names(task.dt), this.task$col_roles$stratum)
  class.task.list[[task_id]] <- this.task
}
class.task.list
#> $easy
#> 
#> ── <TaskClassif> (200x3) ───────────────────────────────────────────────────────
#> • Target: label
#> • Target classes: not spam (positive class, 50%), spam (50%)
#> • Properties: twoclass, strata
#> • Features (2):
#>   • dbl (2): x1_easy, x2_easy
#> • Strata: person and label
#> 
#> $impossible
#> 
#> ── <TaskClassif> (200x3) ───────────────────────────────────────────────────────
#> • Target: label
#> • Target classes: not spam (positive class, 50%), spam (50%)
#> • Properties: twoclass, strata
#> • Features (2):
#>   • dbl (2): x1_impossible, x2_impossible
#> • Strata: person and label
Note in the code above that person is assigned roles subset and
stratum, whereas label is assigned roles target and stratum.  When
adapting the code above to real data, the important part is the
mlr3::TaskClassif line which tells mlr3 what data set to use, and
what columns should be used for target/subset/stratum.
The code below is used to define a K-fold cross-validation experiment,
(class_same_other <- mlr3resampling::ResamplingSameOtherCV$new())
#> 
#> ── <ResamplingSameOtherCV> : Same versus Other Cross-Validation ────────────────
#> • Iterations:
#> • Instantiated: FALSE
#> • Parameters: folds=3
The code below is used to define the learning algorithms to test,
(class.learner.list <- list(
  if(requireNamespace("rpart"))mlr3::LearnerClassifRpart$new(),
  mlr3::LearnerClassifFeatureless$new()))
#> [[1]]
#> 
#> ── <LearnerClassifRpart> (classif.rpart): Classification Tree ──────────────────
#> • Model: -
#> • Parameters: xval=0
#> • Packages: mlr3 and rpart
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, multiclass, selected_features, twoclass,
#> and weights
#> • Other settings: use_weights = 'use'
#> 
#> [[2]]
#> 
#> ── <LearnerClassifFeatureless> (classif.featureless): Featureless Classification
#> • Model: -
#> • Parameters: method=mode
#> • Packages: mlr3
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, character, factor, ordered,
#> POSIXct, and Date
#> • Encapsulation: none (fallback: -)
#> • Properties: featureless, importance, missings, multiclass, selected_features,
#> twoclass, and weights
#> • Other settings: use_weights = 'use'
The code below defines the grid of tasks, learners, and resamplings.
(class.bench.grid <- mlr3::benchmark_grid(
  class.task.list,
  class.learner.list,
  class_same_other))
#>          task             learner    resampling
#>        <char>              <char>        <char>
#> 1:       easy       classif.rpart same_other_cv
#> 2:       easy classif.featureless same_other_cv
#> 3: impossible       classif.rpart same_other_cv
#> 4: impossible classif.featureless same_other_cv
The code below runs the benchmark experiment grid. Note that each iteration can be parallelized by declaring a future plan.
if(FALSE){
  if(require(future))plan("multisession")
}
if(require(lgr))get_logger("mlr3")$set_threshold("warn")
(class.bench.result <- mlr3::benchmark(
  class.bench.grid, store_models = TRUE))
#> 
#> ── <BenchmarkResult> of 72 rows with 4 resampling run ──────────────────────────
#>  nr    task_id          learner_id resampling_id iters warnings errors
#>   1       easy       classif.rpart same_other_cv    18        0      0
#>   2       easy classif.featureless same_other_cv    18        0      0
#>   3 impossible       classif.rpart same_other_cv    18        0      0
#>   4 impossible classif.featureless same_other_cv    18        0      0
Below we compute scores (test error) for each resampling iteration, and show the first row of the result.
class.bench.score <- mlr3resampling::score(class.bench.result)
class.bench.score[1]
#>    train.subsets test.fold test.subset person iteration                  test
#>           <char>     <int>       <int>  <int>     <int>                <list>
#> 1:           all         1           1      1         1  1, 2, 8,11,12,18,...
#>                    train                                uhash    nr
#>                   <list>                               <char> <int>
#> 1:  3, 4, 5, 6, 9,10,... 618ff518-03cd-4c15-9141-a900ec906b1e     1
#>                  task task_id                             learner    learner_id
#>                <list>  <char>                              <list>        <char>
#> 1: <TaskClassif:easy>    easy <LearnerClassifRpart:classif.rpart> classif.rpart
#>                 resampling resampling_id     prediction_test classif.ce
#>                     <list>        <char>              <list>      <num>
#> 1: <ResamplingSameOtherCV> same_other_cv <PredictionClassif> 0.08823529
#>    algorithm
#>       <char>
#> 1:     rpart
Finally we plot the test error values below.
if(require(animint2)){
  ggplot()+
    geom_point(aes(
      classif.ce, train.subsets, color=algorithm),
      shape=1,
      data=class.bench.score)+
    facet_grid(
      person ~ task_id,
      labeller=label_both,
      scales="free")
}
It is clear from the plot above that
The code below can be used to create an interactive data visualization which allows exploring how different functions are learned during different splits.
inst <- class.bench.score$resampling[[1]]$instance
rect.expand <- 0.3
grid.value.dt <- scatter.dt[
, lapply(.SD, function(x)do.call(seq, c(as.list(range(x)), l=21)))
, .SDcols=c("x1","x2")]
grid.class.dt <- data.table(
  label=full.dt$label[1],
  do.call(
    CJ, grid.value.dt
  )
)
class.pred.dt.list <- list()
class.point.dt.list <- list()
for(score.i in 1:nrow(class.bench.score)){
  class.bench.row <- class.bench.score[score.i]
  task.dt <- data.table(
    class.bench.row$task[[1]]$data(),
    class.bench.row$resampling[[1]]$instance$id.dt)
  names(task.dt)[2:3] <- c("x1","x2")
  set.ids <- data.table(
    set.name=c("test","train")
  )[
  , data.table(row_id=class.bench.row[[set.name]][[1]])
  , by=set.name]
  i.points <- set.ids[
    task.dt, on="row_id"
  ][
    is.na(set.name), set.name := "unused"
  ][]
  class.point.dt.list[[score.i]] <- data.table(
    class.bench.row[, .(task_id, iteration)],
    i.points)
  if(class.bench.row$algorithm!="featureless"){
    i.learner <- class.bench.row$learner[[1]]
    i.learner$predict_type <- "prob"
    i.task <- class.bench.row$task[[1]]
    setnames(grid.class.dt, names(i.task$data()))
    grid.class.task <- mlr3::TaskClassif$new(
      "grid", grid.class.dt, target="label")
    pred.grid <- as.data.table(
      i.learner$predict(grid.class.task)
    )[, data.table(grid.class.dt, prob.spam)]
    names(pred.grid)[2:3] <- c("x1","x2")
    pred.wide <- dcast(pred.grid, x1 ~ x2, value.var="prob.spam")
    prob.mat <- as.matrix(pred.wide[,-1])
    contour.list <- contourLines(
      grid.value.dt$x1, grid.value.dt$x2, prob.mat, levels=0.5)
    class.pred.dt.list[[score.i]] <- data.table(
      class.bench.row[, .(
        task_id, iteration, algorithm
      )],
      data.table(contour.i=seq_along(contour.list))[, {
        do.call(data.table, contour.list[[contour.i]])[, .(level, x1=x, x2=y)]
      }, by=contour.i]
    )
  }
}
(class.pred.dt <- rbindlist(class.pred.dt.list))
#>         task_id iteration algorithm contour.i level       x1        x2
#>          <char>     <int>    <char>     <int> <num>    <num>     <num>
#>   1:       easy         1     rpart         1   0.5 1.856156 -3.008049
#>   2:       easy         1     rpart         1   0.5 1.856156 -2.606579
#>   3:       easy         1     rpart         1   0.5 1.856156 -2.205109
#>   4:       easy         1     rpart         1   0.5 1.856156 -1.803639
#>   5:       easy         1     rpart         1   0.5 1.856156 -1.402169
#>  ---                                                                  
#> 766: impossible        18     rpart         1   0.5 3.743510  1.225096
#> 767: impossible        18     rpart         1   0.5 4.158037  1.225096
#> 768: impossible        18     rpart         1   0.5 4.572564  1.225096
#> 769: impossible        18     rpart         1   0.5 4.987091  1.225096
#> 770: impossible        18     rpart         1   0.5 5.401618  1.225096
(class.point.dt <- rbindlist(class.point.dt.list))
#>           task_id iteration set.name row_id    label         x1         x2
#>            <char>     <int>   <char>  <int>   <fctr>      <num>      <num>
#>     1:       easy         1     test      1     spam  2.3735462  1.0744410
#>     2:       easy         1     test      2 not spam  0.1836433  1.8956548
#>     3:       easy         1    train      3     spam  2.1643714 -0.6029973
#>     4:       easy         1    train      4 not spam  1.5952808 -0.3908678
#>     5:       easy         1    train      5     spam  3.3295078 -0.4162220
#>    ---                                                                    
#> 14396: impossible        18    train    196 not spam -0.9243128 -1.0293917
#> 14397: impossible        18    train    197     spam  1.5929138  2.9890743
#> 14398: impossible        18    train    198 not spam  0.0450106 -1.2249912
#> 14399: impossible        18    train    199     spam -0.7151284  0.4038886
#> 14400: impossible        18    train    200 not spam  0.8652231  1.1691226
#>         fold person subset display_row
#>        <int>  <int>  <int>       <int>
#>     1:     1      1      1           1
#>     2:     1      1      1           2
#>     3:     2      1      1          35
#>     4:     2      1      1          36
#>     5:     2      1      1          37
#>    ---                                
#> 14396:     2      2      2         166
#> 14397:     2      2      2         167
#> 14398:     1      2      2         133
#> 14399:     1      2      2         134
#> 14400:     2      2      2         168
set.colors <- c(
  train="#1B9E77",
  test="#D95F02",
  unused="white")
algo.colors <- c(
  featureless="blue",
  rpart="red")
make_person_subset <- function(DT){
  DT[, "person/subset" := person]
}
make_person_subset(class.point.dt)
make_person_subset(class.bench.score)
#> Warning in `[.data.table`(DT, , `:=`("person/subset", person)): A shallow copy
#> of this data.table was taken so that := can add or remove 1 columns by
#> reference. At an earlier point, this data.table was copied by R (or was created
#> manually using structure() or similar). Avoid names<- and attr<- which in R
#> currently (and oddly) may copy the whole data.table. Use set* syntax instead to
#> avoid copying: ?set, ?setnames and ?setattr. It's also not unusual for
#> data.table-agnostic packages to produce tables affected by this issue. If this
#> message doesn't help, please report your use case to the data.table issue
#> tracker so the root cause can be fixed or this message improved.
if(require(animint2)){
  viz <- animint(
    title="SOAK algorithm: train/predict on subsets, classification",
    video="https://vimeo.com/manage/videos/1053464329",
    pred=ggplot()+
      ggtitle("Predictions for selected train/test split")+
      theme_animint(height=350, width=350)+
      scale_fill_manual(values=set.colors)+
      scale_color_manual(values=c(spam="black","not spam"="white"))+
      geom_point(aes(
        x1, x2, color=label, fill=set.name),
        showSelected="iteration",
        size=3,
        help="One dot for each train/test/unused data point.",
        stroke=2,
        shape=21,
        data=class.point.dt)+
      geom_path(aes(
        x1, x2, 
        group=paste(algorithm, iteration, contour.i)),
        showSelected=c("iteration","algorithm"),
        help="Red path represents decision boundary of rpart decision tree learning algorithm.",
        color=algo.colors[["rpart"]],
        data=class.pred.dt)+
      facet_grid(
        task_id ~ `person/subset`,
        labeller=label_both,
        space="free",
        scales="free")+
      scale_y_continuous(
        breaks=seq(-100, 100, by=2)),
    err=ggplot()+
      ggtitle("Test error for each split")+
      theme_animint(height=350, width=350)+
      theme(panel.margin=grid::unit(1, "lines"))+
      scale_y_continuous(
        "Classification error on test set",
        breaks=seq(0, 1, by=0.25))+
      scale_fill_manual(values=algo.colors)+
      scale_x_discrete(
        "People/subsets in train set")+
      geom_hline(aes(
        yintercept=yint),
        help="Horizontal lines highlight baseline error rate of 50%.",
        data=data.table(yint=0.5),
        color="grey50")+
      geom_point(aes(
        train.subsets, classif.ce, fill=algorithm),
        help="One dot per test set and learning algorithm.",
        shape=1,
        size=5,
        stroke=2,
        color="black",
        color_off=NA,
        clickSelects="iteration",
        data=class.bench.score)+
      facet_grid(
        task_id ~ `person/subset`,
        labeller=label_both),
    diagram=ggplot()+
      ggtitle("Select train/test split")+
      theme_animint(height=350, width=300)+
      facet_grid(
        . ~ train.subsets,
        scales="free",
        space="free")+
      scale_size_manual(values=c(subset=3, fold=1))+
      scale_color_manual(values=c(subset="orange", fold="grey50"))+
      geom_rect(aes(
        xmin=-Inf, xmax=Inf,
        color=rows,
        size=rows,
        ymin=display_row, ymax=display_end),
        help="One rect per chunk of data with common fold (grey) and subset (gold).",
        fill=NA,
        data=inst$viz.rect.dt)+
      scale_fill_manual(values=set.colors)+
      geom_text(aes(
        x=ifelse(rows=="subset", Inf, -Inf),
        y=(display_row+display_end)/2,
        hjust=ifelse(rows=="subset", 1, 0),
        label=paste0(rows, "=", ifelse(rows=="subset", subset, fold))),
        help="Text labels indicate chunks of data with common fold (grey) and subset (gold).",
        showSelected="rows",
        data=data.table(train.name="same", inst$viz.rect.dt))+
      geom_rect(aes(
        xmin=iteration-rect.expand, ymin=display_row,
        xmax=iteration+rect.expand, ymax=display_end,
        fill=set.name),
        help="One rect per chunk of data assigned to train/test set in cross-validation.",
        alpha=0.5,
        alpha_off=0.5,
        color="black",
        color_off=NA,
        clickSelects="iteration",
        data=inst$viz.set.dt)+
      scale_x_continuous(
        "Split number / cross-validation iteration",
        breaks=c(1,6, 7,12, 13,18))+
      scale_y_continuous(
        "Row number"),
    source="https://github.com/tdhock/mlr3resampling/blob/main/vignettes/Older_resamplers.Rmd")
}
if(FALSE){
  animint2pages(viz, "2023-12-13-train-predict-subsets-classification")
}
If you are viewing this in an installed package or on CRAN, then there will be no data viz on this page, but you can view it on: https://tdhock.github.io/2023-12-13-train-predict-subsets-classification/
In this section we have shown how to use mlr3resampling for comparing test error of models trained on same/all/other subsets.
The goal of this section is to explain how to
ResamplingVariableSizeTrainCV, which can be used to determine how
many train data are necessary to provide accurate predictions on a
given test set.
The code below creates data for simulated regression problems. First we define a vector of input values,
N <- 300
abs.x <- 10
set.seed(1)
x.vec <- runif(N, -abs.x, abs.x)
str(x.vec)
#>  num [1:300] -4.69 -2.56 1.46 8.16 -5.97 ...
Below we define a list of two true regression functions (tasks in mlr3 terminology) for our simulated data,
reg.pattern.list <- list(
  sin=sin,
  constant=function(x)0)
The constant function represents a regression problem which can be solved by always predicting the mean value of outputs (featureless is the best possible learning algorithm). The sin function will be used to generate data with a non-linear pattern that will need to be learned. Below we use a for loop over these two functions/tasks, to simulate the data which will be used as input to the learning algorithms:
library(data.table)
reg.task.list <- list()
reg.data.list <- list()
for(task_id in names(reg.pattern.list)){
  f <- reg.pattern.list[[task_id]]
  task.dt <- data.table(
    x=x.vec,
    y = f(x.vec)+rnorm(N,sd=0.5))
  reg.data.list[[task_id]] <- data.table(task_id, task.dt)
  reg.task.list[[task_id]] <- mlr3::TaskRegr$new(
    task_id, task.dt, target="y"
  )
}
(reg.data <- rbindlist(reg.data.list))
#>       task_id         x          y
#>        <char>     <num>      <num>
#>   1:      sin -4.689827  1.2248390
#>   2:      sin -2.557522 -0.5607042
#>   3:      sin  1.457067  0.8345056
#>   4:      sin  8.164156  0.4875994
#>   5:      sin -5.966361 -0.4321800
#>  ---                              
#> 596: constant  3.628850 -0.6728968
#> 597: constant -8.016618  0.5168327
#> 598: constant -7.621949 -0.4058882
#> 599: constant -8.991207  0.9008627
#> 600: constant  8.585078  0.8857710
In the table above, the input is x, and the output is y. Below we visualize these data, with one task in each facet/panel:
if(require(animint2)){
  ggplot()+
    geom_point(aes(
      x, y),
      data=reg.data)+
    facet_grid(task_id ~ ., labeller=label_both)
}
In the plot above we can see two different simulated data sets
(constant and sin).  Note that the code above used the animint2
package, which provides interactive extensions to the static graphics
of the ggplot2 package (see below section Interactive data viz).
In the code below, we define a K-fold cross-validation experiment, with K=3 folds.
reg_size_cv <- mlr3resampling::ResamplingVariableSizeTrainCV$new()
reg_size_cv$param_set$values$train_sizes <- 6
reg_size_cv
#> 
#> ── <ResamplingVariableSizeTrainCV> : Cross-Validation with variable size train s
#> • Iterations:
#> • Instantiated: FALSE
#> • Parameters: folds=3, min_train_data=10, random_seeds=3, train_sizes=6
In the output above we can see the parameters of the resampling object, all of which should be integer scalars:
folds is the number of cross-validation folds.min_train_data is the minimum number of train data to consider.random_seeds is the number of random seeds, each of which
determines a different random ordering of the train data. The random
ordering determines which data are included in small train set
sizes.train_sizes is the number of train set sizes, evenly spaced on a
log scale, from min_train_data to the max number of train data
(determined by folds).Below we instantiate the resampling on one of the tasks:
reg_size_cv$instantiate(reg.task.list[["sin"]])
reg_size_cv$instance
#> $iteration.dt
#>     test.fold  seed small_stratum_size train_size_i train_size
#>         <int> <int>              <int>        <int>      <int>
#>  1:         1     1                 10            1         10
#>  2:         1     1                 18            2         18
#>  3:         1     1                 33            3         33
#>  4:         1     1                 60            4         60
#>  5:         1     1                110            5        110
#>  6:         1     1                200            6        200
#>  7:         1     2                 10            1         10
#>  8:         1     2                 18            2         18
#>  9:         1     2                 33            3         33
#> 10:         1     2                 60            4         60
#> 11:         1     2                110            5        110
#> 12:         1     2                200            6        200
#> 13:         1     3                 10            1         10
#> 14:         1     3                 18            2         18
#> 15:         1     3                 33            3         33
#> 16:         1     3                 60            4         60
#> 17:         1     3                110            5        110
#> 18:         1     3                200            6        200
#> 19:         2     1                 10            1         10
#> 20:         2     1                 18            2         18
#> 21:         2     1                 33            3         33
#> 22:         2     1                 60            4         60
#> 23:         2     1                110            5        110
#> 24:         2     1                200            6        200
#> 25:         2     2                 10            1         10
#> 26:         2     2                 18            2         18
#> 27:         2     2                 33            3         33
#> 28:         2     2                 60            4         60
#> 29:         2     2                110            5        110
#> 30:         2     2                200            6        200
#> 31:         2     3                 10            1         10
#> 32:         2     3                 18            2         18
#> 33:         2     3                 33            3         33
#> 34:         2     3                 60            4         60
#> 35:         2     3                110            5        110
#> 36:         2     3                200            6        200
#> 37:         3     1                 10            1         10
#> 38:         3     1                 18            2         18
#> 39:         3     1                 33            3         33
#> 40:         3     1                 60            4         60
#> 41:         3     1                110            5        110
#> 42:         3     1                200            6        200
#> 43:         3     2                 10            1         10
#> 44:         3     2                 18            2         18
#> 45:         3     2                 33            3         33
#> 46:         3     2                 60            4         60
#> 47:         3     2                110            5        110
#> 48:         3     2                200            6        200
#> 49:         3     3                 10            1         10
#> 50:         3     3                 18            2         18
#> 51:         3     3                 33            3         33
#> 52:         3     3                 60            4         60
#> 53:         3     3                110            5        110
#> 54:         3     3                200            6        200
#>     test.fold  seed small_stratum_size train_size_i train_size
#>         <int> <int>              <int>        <int>      <int>
#>                           train                  test iteration train_min_size
#>                          <list>                <list>     <int>          <int>
#>  1: 216,197, 81,171,143, 36,...  1, 7,11,13,15,19,...         1             10
#>  2: 216,197, 81,171,143, 36,...  1, 7,11,13,15,19,...         2             18
#>  3: 216,197, 81,171,143, 36,...  1, 7,11,13,15,19,...         3             33
#>  4: 216,197, 81,171,143, 36,...  1, 7,11,13,15,19,...         4             60
#>  5: 216,197, 81,171,143, 36,...  1, 7,11,13,15,19,...         5            110
#>  6: 216,197, 81,171,143, 36,...  1, 7,11,13,15,19,...         6            200
#>  7: 260,291, 16,164,109, 45,...  1, 7,11,13,15,19,...         7             10
#>  8: 260,291, 16,164,109, 45,...  1, 7,11,13,15,19,...         8             18
#>  9: 260,291, 16,164,109, 45,...  1, 7,11,13,15,19,...         9             33
#> 10: 260,291, 16,164,109, 45,...  1, 7,11,13,15,19,...        10             60
#> 11: 260,291, 16,164,109, 45,...  1, 7,11,13,15,19,...        11            110
#> 12: 260,291, 16,164,109, 45,...  1, 7,11,13,15,19,...        12            200
#> 13:  14,253,115,102,293, 18,...  1, 7,11,13,15,19,...        13             10
#> 14:  14,253,115,102,293, 18,...  1, 7,11,13,15,19,...        14             18
#> 15:  14,253,115,102,293, 18,...  1, 7,11,13,15,19,...        15             33
#> 16:  14,253,115,102,293, 18,...  1, 7,11,13,15,19,...        16             60
#> 17:  14,253,115,102,293, 18,...  1, 7,11,13,15,19,...        17            110
#> 18:  14,253,115,102,293, 18,...  1, 7,11,13,15,19,...        18            200
#> 19: 203,197, 81,171,130, 43,...  4, 6, 9,12,14,16,...        19             10
#> 20: 203,197, 81,171,130, 43,...  4, 6, 9,12,14,16,...        20             18
#> 21: 203,197, 81,171,130, 43,...  4, 6, 9,12,14,16,...        21             33
#> 22: 203,197, 81,171,130, 43,...  4, 6, 9,12,14,16,...        22             60
#> 23: 203,197, 81,171,130, 43,...  4, 6, 9,12,14,16,...        23            110
#> 24: 203,197, 81,171,130, 43,...  4, 6, 9,12,14,16,...        24            200
#> 25: 251,291, 19,164,109, 55,...  4, 6, 9,12,14,16,...        25             10
#> 26: 251,291, 19,164,109, 55,...  4, 6, 9,12,14,16,...        26             18
#> 27: 251,291, 19,164,109, 55,...  4, 6, 9,12,14,16,...        27             33
#> 28: 251,291, 19,164,109, 55,...  4, 6, 9,12,14,16,...        28             60
#> 29: 251,291, 19,164,109, 55,...  4, 6, 9,12,14,16,...        29            110
#> 30: 251,291, 19,164,109, 55,...  4, 6, 9,12,14,16,...        30            200
#> 31:  15,253,115,110,293, 18,...  4, 6, 9,12,14,16,...        31             10
#> 32:  15,253,115,110,293, 18,...  4, 6, 9,12,14,16,...        32             18
#> 33:  15,253,115,110,293, 18,...  4, 6, 9,12,14,16,...        33             33
#> 34:  15,253,115,110,293, 18,...  4, 6, 9,12,14,16,...        34             60
#> 35:  15,253,115,110,293, 18,...  4, 6, 9,12,14,16,...        35            110
#> 36:  15,253,115,110,293, 18,...  4, 6, 9,12,14,16,...        36            200
#> 37: 203,211, 82,194,130, 43,...  2, 3, 5, 8,10,17,...        37             10
#> 38: 203,211, 82,194,130, 43,...  2, 3, 5, 8,10,17,...        38             18
#> 39: 203,211, 82,194,130, 43,...  2, 3, 5, 8,10,17,...        39             33
#> 40: 203,211, 82,194,130, 43,...  2, 3, 5, 8,10,17,...        40             60
#> 41: 203,211, 82,194,130, 43,...  2, 3, 5, 8,10,17,...        41            110
#> 42: 203,211, 82,194,130, 43,...  2, 3, 5, 8,10,17,...        42            200
#> 43: 251,295, 19,189,102, 55,...  2, 3, 5, 8,10,17,...        43             10
#> 44: 251,295, 19,189,102, 55,...  2, 3, 5, 8,10,17,...        44             18
#> 45: 251,295, 19,189,102, 55,...  2, 3, 5, 8,10,17,...        45             33
#> 46: 251,295, 19,189,102, 55,...  2, 3, 5, 8,10,17,...        46             60
#> 47: 251,295, 19,189,102, 55,...  2, 3, 5, 8,10,17,...        47            110
#> 48: 251,295, 19,189,102, 55,...  2, 3, 5, 8,10,17,...        48            200
#> 49:  15,263,135,110,296, 25,...  2, 3, 5, 8,10,17,...        49             10
#> 50:  15,263,135,110,296, 25,...  2, 3, 5, 8,10,17,...        50             18
#> 51:  15,263,135,110,296, 25,...  2, 3, 5, 8,10,17,...        51             33
#> 52:  15,263,135,110,296, 25,...  2, 3, 5, 8,10,17,...        52             60
#> 53:  15,263,135,110,296, 25,...  2, 3, 5, 8,10,17,...        53            110
#> 54:  15,263,135,110,296, 25,...  2, 3, 5, 8,10,17,...        54            200
#>                           train                  test iteration train_min_size
#>                          <list>                <list>     <int>          <int>
#> 
#> $id.dt
#>      row_id  fold
#>       <int> <int>
#>   1:      1     1
#>   2:      2     3
#>   3:      3     3
#>   4:      4     2
#>   5:      5     3
#>  ---             
#> 296:    296     2
#> 297:    297     1
#> 298:    298     1
#> 299:    299     3
#> 300:    300     2
Above we see the instance, which need not be examined by the user, but for informational purposes, it contains the following data:
iteration.dt has one row for each train/test split,id.dt has one row for each data point.In the code below, we define two learners to compare,
(reg.learner.list <- list(
  if(requireNamespace("rpart"))mlr3::LearnerRegrRpart$new(),
  mlr3::LearnerRegrFeatureless$new()))
#> [[1]]
#> 
#> ── <LearnerRegrRpart> (regr.rpart): Regression Tree ────────────────────────────
#> • Model: -
#> • Parameters: xval=0
#> • Packages: mlr3 and rpart
#> • Predict Types: [response]
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, selected_features, and weights
#> • Other settings: use_weights = 'use'
#> 
#> [[2]]
#> 
#> ── <LearnerRegrFeatureless> (regr.featureless): Featureless Regression Learner ─
#> • Model: -
#> • Parameters: robust=FALSE
#> • Packages: mlr3 and stats
#> • Predict Types: [response], se, and quantiles
#> • Feature Types: logical, integer, numeric, character, factor, ordered,
#> POSIXct, and Date
#> • Encapsulation: none (fallback: -)
#> • Properties: featureless, importance, missings, selected_features, and weights
#> • Other settings: use_weights = 'use'
The code above defines
regr.rpart: Regression Tree learning algorithm, which should be
able to learn the non-linear pattern in the sin data (if there are
enough data in the train set).regr.featureless: Featureless Regression learning algorithm, which
should be optimal for the constant data, and can be used as a
baseline in the sin data. When the rpart learner gets smaller
prediction error rates than featureless, then we know that it has
learned some non-trivial relationship between inputs and outputs.In the code below, we define the benchmark grid, which is all combinations of tasks (constant and sin), learners (rpart and featureless), and the one resampling method.
(reg.bench.grid <- mlr3::benchmark_grid(
  reg.task.list,
  reg.learner.list,
  reg_size_cv))
#>        task          learner             resampling
#>      <char>           <char>                 <char>
#> 1:      sin       regr.rpart variable_size_train_cv
#> 2:      sin regr.featureless variable_size_train_cv
#> 3: constant       regr.rpart variable_size_train_cv
#> 4: constant regr.featureless variable_size_train_cv
In the code below, we execute the benchmark experiment (optionally in parallel using the multisession future plan).
if(FALSE){
  if(require(future))plan("multisession")
}
if(require(lgr))get_logger("mlr3")$set_threshold("warn")
(reg.bench.result <- mlr3::benchmark(
  reg.bench.grid, store_models = TRUE))
#> 
#> ── <BenchmarkResult> of 216 rows with 4 resampling run ─────────────────────────
#>  nr  task_id       learner_id          resampling_id iters warnings errors
#>   1      sin       regr.rpart variable_size_train_cv    54        0      0
#>   2      sin regr.featureless variable_size_train_cv    54        0      0
#>   3 constant       regr.rpart variable_size_train_cv    54        0      0
#>   4 constant regr.featureless variable_size_train_cv    54        0      0
The code below computes the test error for each split, and visualizes the information stored in the first row of the result:
reg.bench.score <- mlr3resampling::score(reg.bench.result)
reg.bench.score[1]
#>    test.fold  seed small_stratum_size train_size_i train_size
#>        <int> <int>              <int>        <int>      <int>
#> 1:         1     1                 10            1         10
#>                          train                  test iteration train_min_size
#>                         <list>                <list>     <int>          <int>
#> 1: 216,197, 81,171,143, 36,...  1, 7,11,13,15,19,...         1             10
#>                                   uhash    nr           task task_id
#>                                  <char> <int>         <list>  <char>
#> 1: 293d6802-5ff9-40ed-a7da-2816ae651936     1 <TaskRegr:sin>     sin
#>                          learner learner_id                      resampling
#>                           <list>     <char>                          <list>
#> 1: <LearnerRegrRpart:regr.rpart> regr.rpart <ResamplingVariableSizeTrainCV>
#>             resampling_id  prediction_test  regr.mse algorithm
#>                    <char>           <list>     <num>    <char>
#> 1: variable_size_train_cv <PredictionRegr> 0.8008255     rpart
The output above contains all of the results related to a particular train/test split. In particular for our purposes, the interesting columns are:
test.fold is the cross-validation fold ID.seed is the random seed used to determine the train set order.train_size is the number of data in the train set.train and test are vectors of row numbers assigned to each set.iteration is an ID for the train/test split, for a particular
learning algorithm and task. It is the row number of iteration.dt
(see instance above), which has one row for each unique combination
of test.fold, seed, and train_size.learner is the mlr3 learner object, which can be used to compute
predictions on new data (including a grid of inputs, to show
predictions in the visualization below).regr.mse is the mean squared error on the test set.algorithm is the name of the learning algorithm (same as
learner_id but without regr. prefix).The code below visualizes the resulting test accuracy numbers.
train_size_vec <- unique(reg.bench.score$train_size)
if(require(animint2)){
  ggplot()+
    scale_x_log10(
      breaks=train_size_vec)+
    scale_y_log10()+
    geom_line(aes(
      train_size, regr.mse,
      group=paste(algorithm, seed),
      color=algorithm),
      shape=1,
      data=reg.bench.score)+
    geom_point(aes(
      train_size, regr.mse, color=algorithm),
      shape=1,
      data=reg.bench.score)+
    facet_grid(
      test.fold~task_id,
      labeller=label_both,
      scales="free")
}
Above we plot the test error for each fold and train set size. There is a different panel for each task and test fold. Each line represents a random seed (ordering of data in train set), and each dot represents a specific train set size. So the plot above shows that some variation in test error, for a given test fold, is due to the random ordering of the train data.
Below we summarize each train set size, by taking the mean and standard deviation over each random seed.
reg.mean.dt <- dcast(
  reg.bench.score,
  task_id + train_size + test.fold + algorithm ~ .,
  list(mean, sd),
  value.var="regr.mse")
if(require(animint2)){
  ggplot()+
    scale_x_log10(
      breaks=train_size_vec)+
    scale_y_log10()+
    geom_ribbon(aes(
      train_size,
      ymin=regr.mse_mean-regr.mse_sd,
      ymax=regr.mse_mean+regr.mse_sd,
      fill=algorithm),
      alpha=0.5,
      data=reg.mean.dt)+
    geom_line(aes(
      train_size, regr.mse_mean, color=algorithm),
      shape=1,
      data=reg.mean.dt)+
    facet_grid(
      test.fold~task_id,
      labeller=label_both,
      scales="free")
}
#> Warning in grid.Call.graphics(C_polygon, x$x, x$y, index): la semi-transparence
#> n'est pas supportée sur ce périphérique : signalé seulement une fois par page
The plot above shows a line for the mean, and a ribbon for the standard deviation, over the three random seeds. It is clear from the plot above that
The code below can be used to create an interactive data visualization which allows exploring how different functions are learned during different splits.
grid.dt <- data.table(x=seq(-abs.x, abs.x, l=101), y=0)
grid.task <- mlr3::TaskRegr$new("grid", grid.dt, target="y")
pred.dt.list <- list()
point.dt.list <- list()
for(score.i in 1:nrow(reg.bench.score)){
  reg.bench.row <- reg.bench.score[score.i]
  task.dt <- data.table(
    reg.bench.row$task[[1]]$data(),
    reg.bench.row$resampling[[1]]$instance$id.dt)
  set.ids <- data.table(
    set.name=c("test","train")
  )[
  , data.table(row_id=reg.bench.row[[set.name]][[1]])
  , by=set.name]
  i.points <- set.ids[
    task.dt, on="row_id"
  ][
    is.na(set.name), set.name := "unused"
  ]
  point.dt.list[[score.i]] <- data.table(
    reg.bench.row[, .(task_id, iteration)],
    i.points)
  i.learner <- reg.bench.row$learner[[1]]
  pred.dt.list[[score.i]] <- data.table(
    reg.bench.row[, .(
      task_id, iteration, algorithm
    )],
    as.data.table(
      i.learner$predict(grid.task)
    )[, .(x=grid.dt$x, y=response)]
  )
}
(pred.dt <- rbindlist(pred.dt.list))
#>         task_id iteration   algorithm     x           y
#>          <char>     <int>      <char> <num>       <num>
#>     1:      sin         1       rpart -10.0  0.25011658
#>     2:      sin         1       rpart  -9.8  0.25011658
#>     3:      sin         1       rpart  -9.6  0.25011658
#>     4:      sin         1       rpart  -9.4  0.25011658
#>     5:      sin         1       rpart  -9.2  0.25011658
#>    ---                                                 
#> 21812: constant        54 featureless   9.2 -0.03385654
#> 21813: constant        54 featureless   9.4 -0.03385654
#> 21814: constant        54 featureless   9.6 -0.03385654
#> 21815: constant        54 featureless   9.8 -0.03385654
#> 21816: constant        54 featureless  10.0 -0.03385654
(point.dt <- rbindlist(point.dt.list))
#>         task_id iteration set.name row_id          y         x  fold
#>          <char>     <int>   <char>  <int>      <num>     <num> <int>
#>     1:      sin         1     test      1  1.2248390 -4.689827     1
#>     2:      sin         1   unused      2 -0.5607042 -2.557522     3
#>     3:      sin         1   unused      3  0.8345056  1.457067     3
#>     4:      sin         1   unused      4  0.4875994  8.164156     2
#>     5:      sin         1   unused      5 -0.4321800 -5.966361     3
#>    ---                                                              
#> 64796: constant        54    train    296 -0.6728968  3.628850     2
#> 64797: constant        54    train    297  0.5168327 -8.016618     1
#> 64798: constant        54    train    298 -0.4058882 -7.621949     1
#> 64799: constant        54     test    299  0.9008627 -8.991207     3
#> 64800: constant        54    train    300  0.8857710  8.585078     2
set.colors <- c(
  train="#1B9E77",
  test="#D95F02",
  unused="white")
algo.colors <- c(
  featureless="blue",
  rpart="red")
if(require(animint2)){
  viz <- animint(
    title="Variable size train set, regression",
    pred=ggplot()+
      ggtitle("Predictions for selected train/test split")+
      theme_animint(height=400)+
      scale_fill_manual(values=set.colors)+
      geom_point(aes(
        x, y, fill=set.name),
        help="One dot per sample in train/test/unused set.",
        showSelected="iteration",
        size=3,
        shape=21,
        data=point.dt)+
      scale_size_manual(values=c(
        featureless=3,
        rpart=2))+
      scale_color_manual(values=algo.colors)+
      geom_line(aes(
        x, y,
        color=algorithm,
        size=algorithm,
        group=paste(algorithm, iteration)),
        help="One line per learned prediction function.",
        showSelected="iteration",
        data=pred.dt)+
      facet_grid(
        task_id ~ .,
        labeller=label_both),
    err=ggplot()+
      ggtitle("Test error for each split")+
      theme_animint(width=500)+
      theme(
        panel.margin=grid::unit(1, "lines"),
        legend.position="none")+
      scale_y_log10(
        "Mean squared error on test set")+
      scale_color_manual(values=algo.colors)+
      scale_x_log10(
        "Train set size",
        breaks=train_size_vec)+
      geom_line(aes(
        train_size, regr.mse,
        group=paste(algorithm, seed),
        color=algorithm),
        help="One line per algorithm and random seed used to order train set.",
        clickSelects="seed",
        alpha_off=0.2,
        showSelected="algorithm",
        size=4,
        data=reg.bench.score)+
      facet_grid(
        test.fold~task_id,
        labeller=label_both,
        scales="free")+
      geom_point(aes(
        train_size, regr.mse,
        color=algorithm),
        help="One point per algorithm and train set size, for the selected random ordering.",
        size=5,
        stroke=3,
        fill="black",
        fill_off=NA,
        showSelected=c("algorithm","seed"),
        clickSelects="iteration",
        data=reg.bench.score),
    video="https://vimeo.com/manage/videos/1053467310",
    source="https://github.com/tdhock/mlr3resampling/blob/main/vignettes/Older_resamplers.Rmd")
}
if(FALSE){
  animint2pages(viz, "2023-12-26-train-sizes-regression")
}
If you are viewing this in an installed package or on CRAN, then there will be no data viz on this page, but you can view it on: https://tdhock.github.io/2023-12-26-train-sizes-regression/
The interactive data viz consists of two plots:
Whereas in the section above, we focused on regression (output is a real number), in this section we simulate a binary classification problem (output if a factor with two levels).
class.N <- 900
class.abs.x <- 1
rclass <- function(){
  runif(class.N, -class.abs.x, class.abs.x)
}
library(data.table)
set.seed(1)
class.x.dt <- data.table(x1=rclass(), x2=rclass())
class.fun.list <- list(
  constant=function(...)0.5,
  xor=function(x1, x2)xor(x1>0, x2>0))
class.data.list <- list()
class.task.list <- list()
for(task_id in names(class.fun.list)){
  class.fun <- class.fun.list[[task_id]]
  y <- factor(ifelse(
    class.x.dt[, class.fun(x1, x2)+rnorm(class.N, sd=0.5)]>0.5,
    "spam", "not"))
  task.dt <- data.table(class.x.dt, y)
  this.task <- mlr3::TaskClassif$new(
    task_id, task.dt, target="y")
  this.task$col_roles$stratum <- "y"
  class.task.list[[task_id]] <- this.task
  class.data.list[[task_id]] <- data.table(task_id, task.dt)
}
(class.data <- rbindlist(class.data.list))
#>        task_id         x1          x2      y
#>         <char>      <num>       <num> <fctr>
#>    1: constant -0.4689827  0.66379798    not
#>    2: constant -0.2557522  0.53368551   spam
#>    3: constant  0.1457067 -0.45443937   spam
#>    4: constant  0.8164156 -0.62367340    not
#>    5: constant -0.5966361 -0.54847633   spam
#>   ---                                       
#> 1796:      xor -0.7614714 -0.01958119    not
#> 1797:      xor  0.1871909 -0.96323285    not
#> 1798:      xor -0.9253746 -0.64121842    not
#> 1799:      xor -0.9808564 -0.40121772   spam
#> 1800:      xor -0.6768077 -0.44607188    not
The simulated data table above consists of two input features (x1
and x2) along with an output/label to predict (y). Below we count
the number of times each label appears in each task:
class.data[, .(count=.N), by=.(task_id, y)]
#>     task_id      y count
#>      <char> <fctr> <int>
#> 1: constant    not   462
#> 2: constant   spam   438
#> 3:      xor   spam   462
#> 4:      xor    not   438
The table above shows that the spam label is the minority class
(not is majority, so that will be the prediction of the featureless
baseline). Below we visualize the data in the feature space:
if(require(animint2)){
  ggplot()+
    geom_point(aes(
      x1, x2, color=y),
      shape=1,
      data=class.data)+
    facet_grid(. ~ task_id, labeller=label_both)+
    coord_equal()
}
The plot above shows how the output y is related to the two inputs x1 and
x2, for the two tasks.
x1 or
x2 being negative (but not both).In the mlr3 code below, we define a list of learners, our resampling method, and a benchmark grid:
class.learner.list <- list(
  if(requireNamespace("rpart"))mlr3::LearnerClassifRpart$new(),
  mlr3::LearnerClassifFeatureless$new())
size_cv <- mlr3resampling::ResamplingVariableSizeTrainCV$new()
(class.bench.grid <- mlr3::benchmark_grid(
  class.task.list,
  class.learner.list,
  size_cv))
#>        task             learner             resampling
#>      <char>              <char>                 <char>
#> 1: constant       classif.rpart variable_size_train_cv
#> 2: constant classif.featureless variable_size_train_cv
#> 3:      xor       classif.rpart variable_size_train_cv
#> 4:      xor classif.featureless variable_size_train_cv
Below we run the learning algorithm for each of the train/test splits defined by our benchmark grid:
if(FALSE){
  if(require(future))plan("multisession")
}
if(require(lgr))get_logger("mlr3")$set_threshold("warn")
(class.bench.result <- mlr3::benchmark(
  class.bench.grid, store_models = TRUE))
#> 
#> ── <BenchmarkResult> of 180 rows with 4 resampling run ─────────────────────────
#>  nr  task_id          learner_id          resampling_id iters warnings errors
#>   1 constant       classif.rpart variable_size_train_cv    45        0      0
#>   2 constant classif.featureless variable_size_train_cv    45        0      0
#>   3      xor       classif.rpart variable_size_train_cv    45        0      0
#>   4      xor classif.featureless variable_size_train_cv    45        0      0
Below we compute scores (test error) for each resampling iteration, and show the first row of the result.
class.bench.score <- mlr3resampling::score(class.bench.result)
class.bench.score[1]
#>    test.fold  seed small_stratum_size train_size_i train_size
#>        <int> <int>              <int>        <int>      <int>
#> 1:         1     1                 10            1         21
#>                          train                  test iteration train_min_size
#>                         <list>                <list>     <int>          <int>
#> 1:  91,746,863,730,208,508,...  4,10,12,33,40,49,...         1             21
#>                                   uhash    nr                   task  task_id
#>                                  <char> <int>                 <list>   <char>
#> 1: 640facf3-e501-4c22-b15c-8027e10bdddb     1 <TaskClassif:constant> constant
#>                                learner    learner_id
#>                                 <list>        <char>
#> 1: <LearnerClassifRpart:classif.rpart> classif.rpart
#>                         resampling          resampling_id     prediction_test
#>                             <list>                 <char>              <list>
#> 1: <ResamplingVariableSizeTrainCV> variable_size_train_cv <PredictionClassif>
#>    classif.ce algorithm
#>         <num>    <char>
#> 1:  0.5266667     rpart
The output above has columns which are very similar to the regression
example in the previous section. The main difference is the
classif.ce column, which is the classification error on the test
set.
Finally we plot the test error values below.
if(require(animint2)){
  ggplot()+
    geom_line(aes(
      train_size, classif.ce,
      group=paste(algorithm, seed),
      color=algorithm),
      shape=1,
      data=class.bench.score)+
    geom_point(aes(
      train_size, classif.ce, color=algorithm),
      shape=1,
      data=class.bench.score)+
    facet_grid(
      task_id ~ test.fold,
      labeller=label_both)+
    scale_x_log10(
      breaks=unique(class.bench.score$train_size))+
    scale_y_continuous(
      "Test error rate",
      limits=c(0.1,0.6),
      breaks=seq(0.1,0.6,by=0.1))
}
It is clear from the plot above that
Exercise for the reader: compute and plot mean and SD for these classification tasks, similar to the plot for the regression tasks in the previous section.
The code below can be used to create an interactive data visualization which allows exploring how different functions are learned during different splits.
class.grid.vec <- seq(-class.abs.x, class.abs.x, l=21)
class.grid.dt <- CJ(x1=class.grid.vec, x2=class.grid.vec)
class.pred.dt.list <- list()
class.point.dt.list <- list()
for(score.i in 1:nrow(class.bench.score)){
  class.bench.row <- class.bench.score[score.i]
  task.dt <- data.table(
    class.bench.row$task[[1]]$data(),
    class.bench.row$resampling[[1]]$instance$id.dt)
  set.ids <- data.table(
    set.name=c("test","train")
  )[
  , data.table(row_id=class.bench.row[[set.name]][[1]])
  , by=set.name]
  i.points <- set.ids[
    task.dt, on="row_id"
  ][
    is.na(set.name), set.name := "unused"
  ][]
  class.point.dt.list[[score.i]] <- data.table(
    class.bench.row[, .(task_id, iteration)],
    i.points)
  if(class.bench.row$algorithm!="featureless"){
    i.learner <- class.bench.row$learner[[1]]
    i.learner$predict_type <- "prob"
    i.task <- class.bench.row$task[[1]]
    grid.class.task <- mlr3::TaskClassif$new(
      "grid", class.grid.dt[, label:=factor(NA,levels(task.dt$y))], target="label")
    pred.grid <- as.data.table(
      i.learner$predict(grid.class.task)
    )[, data.table(class.grid.dt, prob.spam)]
    pred.wide <- dcast(pred.grid, x1 ~ x2, value.var="prob.spam")
    prob.mat <- as.matrix(pred.wide[,-1])
    if(length(table(prob.mat))>1){
      contour.list <- contourLines(
        class.grid.vec, class.grid.vec, prob.mat, levels=0.5)
      class.pred.dt.list[[score.i]] <- data.table(
        class.bench.row[, .(
          task_id, iteration, algorithm
        )],
        data.table(contour.i=seq_along(contour.list))[, {
          do.call(data.table, contour.list[[contour.i]])[, .(level, x1=x, x2=y)]
        }, by=contour.i]
      )
    }
  }
}
(class.pred.dt <- rbindlist(class.pred.dt.list))
#>        task_id iteration algorithm contour.i level         x1         x2
#>         <char>     <int>    <char>     <int> <num>      <num>      <num>
#>    1: constant         1     rpart         1   0.5 -1.0000000 -0.3531915
#>    2: constant         1     rpart         1   0.5 -0.9000000 -0.3531915
#>    3: constant         1     rpart         1   0.5 -0.8000000 -0.3531915
#>    4: constant         1     rpart         1   0.5 -0.7000000 -0.3531915
#>    5: constant         1     rpart         1   0.5 -0.6000000 -0.3531915
#>   ---                                                                   
#> 5502:      xor        45     rpart         2   0.5  0.7000000  0.0499392
#> 5503:      xor        45     rpart         2   0.5  0.8000000  0.0499392
#> 5504:      xor        45     rpart         2   0.5  0.8465335  0.0000000
#> 5505:      xor        45     rpart         2   0.5  0.9000000 -0.0460000
#> 5506:      xor        45     rpart         2   0.5  1.0000000 -0.0460000
(class.point.dt <- rbindlist(class.point.dt.list))
#>          task_id iteration set.name row_id      y         x1          x2  fold
#>           <char>     <int>   <char>  <int> <fctr>      <num>       <num> <int>
#>      1: constant         1   unused      1    not -0.4689827  0.66379798     3
#>      2: constant         1   unused      2   spam -0.2557522  0.53368551     2
#>      3: constant         1   unused      3   spam  0.1457067 -0.45443937     2
#>      4: constant         1     test      4    not  0.8164156 -0.62367340     1
#>      5: constant         1     test      5   spam -0.5966361 -0.54847633     1
#>     ---                                                                       
#> 161996:      xor        45     test    896    not -0.7614714 -0.01958119     3
#> 161997:      xor        45     test    897    not  0.1871909 -0.96323285     3
#> 161998:      xor        45    train    898    not -0.9253746 -0.64121842     2
#> 161999:      xor        45    train    899   spam -0.9808564 -0.40121772     1
#> 162000:      xor        45    train    900    not -0.6768077 -0.44607188     1
set.colors <- c(
  train="#1B9E77",
  test="#D95F02",
  unused="white")
algo.colors <- c(
  featureless="blue",
  rpart="red")
if(require(animint2)){
  viz <- animint(
    title="Variable size train sets, classification",
    pred=ggplot()+
      ggtitle("Predictions for selected train/test split")+
      theme(panel.margin=grid::unit(1, "lines"))+
      theme_animint(width=600)+
      coord_equal()+
      scale_fill_manual(values=set.colors)+
      scale_color_manual(values=c(spam="black","not spam"="white"))+
      geom_point(aes(
        x1, x2, color=y, fill=set.name),
        showSelected="iteration",
        help="One dot per data sample in the train/test/unused set.",
        size=3,
        stroke=2,
        shape=21,
        data=class.point.dt)+
      geom_path(aes(
        x1, x2, 
        group=paste(algorithm, iteration, contour.i)),
        showSelected=c("iteration","algorithm"),
        help="Red path represents decision boundary of rpart decision tree learning algorithm.",
        color=algo.colors[["rpart"]],
        data=class.pred.dt)+
      facet_grid(
        . ~ task_id,
        labeller=label_both,
        space="free",
        scales="free"),
    err=ggplot()+
      ggtitle("Test error for each split")+
      theme_animint(height=400)+
      theme(panel.margin=grid::unit(1, "lines"))+
      scale_y_continuous(
        "Classification error on test set",
        limits=c(0.1,0.6),
        breaks=seq(0.1,0.6,by=0.1))+
      scale_color_manual(values=algo.colors)+
      scale_x_log10(
        "Train set size",
        breaks=unique(class.bench.score$train_size))+
      geom_line(aes(
        train_size, classif.ce,
        group=paste(algorithm, seed),
        color=algorithm),
        help="One line per algorithm and random seed used to order train set.",
        clickSelects="seed",
        alpha_off=0.2,
        showSelected="algorithm",
        size=4,
        data=class.bench.score)+
      facet_grid(
        test.fold~task_id,
        labeller=label_both,
        scales="free")+
      geom_point(aes(
        train_size, classif.ce,
        color=algorithm),
        size=5,
        stroke=3,
        fill="black",
        fill_off=NA,
        help="One point per algorithm and train set size, for the selected random ordering.",
        showSelected=c("algorithm","seed"),
        clickSelects="iteration",
        data=class.bench.score),
    video="https://vimeo.com/1053477025",
    source="https://github.com/tdhock/mlr3resampling/blob/main/vignettes/Older_resamplers.Rmd")
}
if(FALSE){
  animint2pages(viz, "2023-12-27-train-sizes-classification")
}
If you are viewing this in an installed package or on CRAN, then there will be no data viz on this page, but you can view it on: https://tdhock.github.io/2023-12-27-train-sizes-classification/
The interactive data viz consists of two plots
In this section we have shown how to use mlr3resampling for comparing test error of models trained on different sized train sets.
sessionInfo()
#> R Under development (unstable) (2025-05-21 r88220)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.12.0 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=fr_FR.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=fr_FR.UTF-8        LC_COLLATE=C              
#>  [5] LC_MONETARY=fr_FR.UTF-8    LC_MESSAGES=fr_FR.UTF-8   
#>  [7] LC_PAPER=fr_FR.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Europe/Paris
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] lgr_0.4.4                animint2_2025.6.4        directlabels_2025.5.20  
#> [4] mlr3resampling_2025.6.23 mlr3_1.0.0.9000          future_1.58.0           
#> [7] ggplot2_3.5.1            data.table_1.17.99      
#> 
#> loaded via a namespace (and not attached):
#>  [1] generics_0.1.3       stringi_1.8.7        listenv_0.9.1       
#>  [4] digest_0.6.37        magrittr_2.0.3       evaluate_1.0.3      
#>  [7] grid_4.6.0           plyr_1.8.9           backports_1.5.0     
#> [10] scales_1.3.0         mlr3tuning_1.3.0     codetools_0.2-20    
#> [13] mlr3measures_1.0.0   palmerpenguins_0.1.1 cli_3.6.5           
#> [16] rlang_1.1.6          crayon_1.5.3         parallelly_1.45.0   
#> [19] litedown_0.6         future.apply_1.20.0  munsell_0.5.1       
#> [22] commonmark_1.9.5     withr_3.0.2          nc_2025.3.24        
#> [25] tools_4.6.0          parallel_4.6.0       reshape2_1.4.4      
#> [28] RJSONIO_1.3-1.9      uuid_1.2-1           checkmate_2.3.2     
#> [31] dplyr_1.1.4          colorspace_2.1-1     globals_0.18.0      
#> [34] bbotk_1.5.0          vctrs_0.6.5          R6_2.6.1            
#> [37] mime_0.13            rpart_4.1.24         lifecycle_1.0.4     
#> [40] stringr_1.5.1        mlr3misc_0.18.0      pkgconfig_2.0.3     
#> [43] pillar_1.10.2        gtable_0.3.6         Rcpp_1.0.14         
#> [46] glue_1.8.0           paradox_1.0.1        xfun_0.51           
#> [49] tibble_3.2.1         tidyselect_1.2.1     knitr_1.50          
#> [52] farver_2.1.2         labeling_0.4.3       compiler_4.6.0      
#> [55] quadprog_1.5-8       markdown_2.0
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.