The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

xgboost: Regression

# nolint start
library(mlexperiments)
library(mllrnrs)

See https://github.com/kapsner/mllrnrs/blob/main/R/learner_xgboost.R for implementation details.

Preprocessing

Import and Prepare Data

library(mlbench)
data("BostonHousing")
dataset <- BostonHousing |>
  data.table::as.data.table() |>
  na.omit()

feature_cols <- colnames(dataset)[1:13]
target_col <- "medv"

General Configurations

seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
  # on cran
  ncores <- 2L
} else {
  ncores <- ifelse(
    test = parallel::detectCores() > 4,
    yes = 4L,
    no = ifelse(
      test = parallel::detectCores() < 2L,
      yes = 1L,
      no = parallel::detectCores()
    )
  )
}
options("mlexperiments.bayesian.max_init" = 10L)
options("mlexperiments.optim.xgb.nrounds" = 100L)
options("mlexperiments.optim.xgb.early_stopping_rounds" = 10L)

Generate Training- and Test Data

data_split <- splitTools::partition(
  y = dataset[, get(target_col)],
  p = c(train = 0.7, test = 0.3),
  type = "stratified",
  seed = seed
)

train_x <- model.matrix(
  ~ -1 + .,
  dataset[data_split$train, .SD, .SDcols = feature_cols]
)
train_y <- log(dataset[data_split$train, get(target_col)])


test_x <- model.matrix(
  ~ -1 + .,
  dataset[data_split$test, .SD, .SDcols = feature_cols]
)
test_y <- log(dataset[data_split$test, get(target_col)])

Generate Training Data Folds

fold_list <- splitTools::create_folds(
  y = train_y,
  k = 3,
  type = "stratified",
  seed = seed
)

Experiments

Prepare Experiments

# required learner arguments, not optimized
learner_args <- list(
  objective = "reg:squarederror",
  eval_metric = "rmse"
)

# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- NULL
performance_metric <- metric("rmsle")
performance_metric_args <- NULL
return_models <- FALSE

# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
  subsample = seq(0.6, 1, .2),
  colsample_bytree = seq(0.6, 1, .2),
  min_child_weight = seq(1, 5, 4),
  learning_rate = seq(0.1, 0.2, 0.1),
  max_depth = seq(1, 5, 4)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
  set.seed(123)
  sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
  parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}

# required for bayesian optimization
parameter_bounds <- list(
  subsample = c(0.2, 1),
  colsample_bytree = c(0.2, 1),
  min_child_weight = c(1L, 10L),
  learning_rate = c(0.1, 0.2),
  max_depth =  c(1L, 10L)
)
optim_args <- list(
  iters.n = ncores,
  kappa = 3.5,
  acq = "ucb"
)

Hyperparameter Tuning

tuner <- mlexperiments::MLTuneParameters$new(
  learner = mllrnrs::LearnerXgboost$new(
    metric_optimization_higher_better = FALSE
  ),
  strategy = "grid",
  ncores = ncores,
  seed = seed
)

tuner$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"

tuner$set_data(
  x = train_x,
  y = train_y
)

tuner_results_grid <- tuner$execute(k = 3)
#> 
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)                                                                                                                                  

head(tuner_results_grid)
#>    setting_id metric_optim_mean nrounds subsample colsample_bytree min_child_weight learning_rate max_depth        objective
#> 1:          1         0.1865926      77       0.6              0.8                5           0.2         1 reg:squarederror
#> 2:          2         0.1612372      98       1.0              0.8                5           0.1         5 reg:squarederror
#> 3:          3         0.1933602      93       0.8              0.8                5           0.1         1 reg:squarederror
#> 4:          4         0.1615993      78       0.6              0.8                5           0.2         5 reg:squarederror
#> 5:          5         0.1648096      99       1.0              0.8                1           0.1         5 reg:squarederror
#> 6:          6         0.1573879     100       0.8              0.8                5           0.1         5 reg:squarederror
#>    eval_metric
#> 1:        rmse
#> 2:        rmse
#> 3:        rmse
#> 4:        rmse
#> 5:        rmse
#> 6:        rmse

Bayesian Optimization

tuner <- mlexperiments::MLTuneParameters$new(
  learner = mllrnrs::LearnerXgboost$new(
    metric_optimization_higher_better = FALSE
  ),
  strategy = "bayesian",
  ncores = ncores,
  seed = seed
)

tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds

tuner$learner_args <- learner_args
tuner$optim_args <- optim_args

tuner$split_type <- "stratified"

tuner$set_data(
  x = train_x,
  y = train_y
)

tuner_results_bayesian <- tuner$execute(k = 3)
#> 
#> Registering parallel backend using 4 cores.

head(tuner_results_bayesian)
#>    Epoch setting_id subsample colsample_bytree min_child_weight learning_rate max_depth gpUtility acqOptimum inBounds Elapsed
#> 1:     0          1       0.6              0.8                5           0.2         1        NA      FALSE     TRUE   1.569
#> 2:     0          2       1.0              0.8                5           0.1         5        NA      FALSE     TRUE   1.663
#> 3:     0          3       0.8              0.8                5           0.1         1        NA      FALSE     TRUE   1.611
#> 4:     0          4       0.6              0.8                5           0.2         5        NA      FALSE     TRUE   1.611
#> 5:     0          5       1.0              0.8                1           0.1         5        NA      FALSE     TRUE   0.941
#> 6:     0          6       0.8              0.8                5           0.1         5        NA      FALSE     TRUE   0.906
#>         Score metric_optim_mean nrounds errorMessage        objective eval_metric
#> 1: -0.1865024         0.1865024      56           NA reg:squarederror        rmse
#> 2: -0.1607242         0.1607242      89           NA reg:squarederror        rmse
#> 3: -0.1913163         0.1913163     100           NA reg:squarederror        rmse
#> 4: -0.1609879         0.1609879      66           NA reg:squarederror        rmse
#> 5: -0.1573682         0.1573682     100           NA reg:squarederror        rmse
#> 6: -0.1635603         0.1635603      92           NA reg:squarederror        rmse

k-Fold Cross Validation

validator <- mlexperiments::MLCrossValidation$new(
  learner = mllrnrs::LearnerXgboost$new(
    metric_optimization_higher_better = FALSE
  ),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)

validator$learner_args <- tuner$results$best.setting[-1]

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models

validator$set_data(
  x = train_x,
  y = train_y
)

validator_results <- validator$execute()
#> 
#> CV fold: Fold1
#> 
#> CV fold: Fold2
#> 
#> CV fold: Fold3

head(validator_results)
#>     fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds        objective eval_metric
#> 1: Fold1  0.04193925       0.6                1                1           0.1         5      92 reg:squarederror        rmse
#> 2: Fold2  0.05079392       0.6                1                1           0.1         5      92 reg:squarederror        rmse
#> 3: Fold3  0.03915493       0.6                1                1           0.1         5      92 reg:squarederror        rmse

Nested Cross Validation

validator <- mlexperiments::MLNestedCV$new(
  learner = mllrnrs::LearnerXgboost$new(
    metric_optimization_higher_better = FALSE
  ),
  strategy = "grid",
  fold_list = fold_list,
  k_tuning = 3L,
  ncores = ncores,
  seed = seed
)

validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models

validator$set_data(
  x = train_x,
  y = train_y
)

validator_results <- validator$execute()
#> 
#> CV fold: Fold1
#> 
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)                                                                                                                                  
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#> 
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)                                                                                                                                  
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>                                                                                                                                   
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)                                                                                                                                  

head(validator_results)
#>     fold performance nrounds subsample colsample_bytree min_child_weight learning_rate max_depth        objective eval_metric
#> 1: Fold1  0.04291802      64       0.8              0.8                5           0.1         5 reg:squarederror        rmse
#> 2: Fold2  0.05138479      76       0.6              1.0                1           0.1         5 reg:squarederror        rmse
#> 3: Fold3  0.03818053      36       0.6              0.8                5           0.2         5 reg:squarederror        rmse

Inner Bayesian Optimization

validator <- mlexperiments::MLNestedCV$new(
  learner = mllrnrs::LearnerXgboost$new(
    metric_optimization_higher_better = FALSE
  ),
  strategy = "bayesian",
  fold_list = fold_list,
  k_tuning = 3L,
  ncores = ncores,
  seed = seed
)

validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"


validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE

validator$set_data(
  x = train_x,
  y = train_y
)

validator_results <- validator$execute()
#> 
#> CV fold: Fold1
#> 
#> Registering parallel backend using 4 cores.
#> 
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#> 
#> Registering parallel backend using 4 cores.
#> 
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>                                                                                                                                   
#> Registering parallel backend using 4 cores.

head(validator_results)
#>     fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds        objective eval_metric
#> 1: Fold1  0.04147964 0.6225939        0.9208933                5     0.1326066         5      59 reg:squarederror        rmse
#> 2: Fold2  0.05881907 1.0000000        0.8000000                1     0.1000000         5      94 reg:squarederror        rmse
#> 3: Fold3  0.03890190 0.6000000        1.0000000                5     0.2000000         5      37 reg:squarederror        rmse

Holdout Test Dataset Performance

Predict Outcome in Holdout Test Dataset

preds_xgboost <- mlexperiments::predictions(
  object = validator,
  newdata = test_x
)

Evaluate Performance on Holdout Test Dataset

perf_xgboost <- mlexperiments::performance(
  object = validator,
  prediction_results = preds_xgboost,
  y_ground_truth = test_y,
  type = "regression"
)
perf_xgboost
#>    model performance        mse        msle       mae       mape      rmse      rmsle       rsq      sse
#> 1: Fold1  0.04322328 0.02725729 0.001868252 0.1188479 0.04074989 0.1650978 0.04322328 0.8227146 4.224880
#> 2: Fold2  0.04730978 0.03081692 0.002238216 0.1235033 0.04247960 0.1755475 0.04730978 0.7995622 4.776623
#> 3: Fold3  0.03977942 0.02204549 0.001582402 0.1090010 0.03781531 0.1484773 0.03977942 0.8566129 3.417052

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.