# nolint start
library(mlexperiments)
library(mllrnrs)
The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# nolint start
library(mlexperiments)
library(mllrnrs)
See https://github.com/kapsner/mllrnrs/blob/main/R/learner_xgboost.R for implementation details.
library(mlbench)
data("DNA")
<- DNA |>
dataset ::as.data.table() |>
data.tablena.omit()
<- colnames(dataset)[160:180]
feature_cols <- "Class" target_col
<- 123
seed if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
<- 2L
ncores else {
} <- ifelse(
ncores test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}options("mlexperiments.bayesian.max_init" = 10L)
options("mlexperiments.optim.xgb.nrounds" = 100L)
options("mlexperiments.optim.xgb.early_stopping_rounds" = 10L)
<- splitTools::partition(
data_split y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
<- model.matrix(
train_x ~ -1 + .,
$train, .SD, .SDcols = feature_cols]
dataset[data_split
)<- as.integer(dataset[data_split$train, get(target_col)]) - 1L
train_y
<- model.matrix(
test_x ~ -1 + .,
$test, .SD, .SDcols = feature_cols]
dataset[data_split
)<- as.integer(dataset[data_split$test, get(target_col)]) - 1L test_y
<- splitTools::create_folds(
fold_list y = train_y,
k = 3,
type = "stratified",
seed = seed
)
# required learner arguments, not optimized
<- list(
learner_args objective = "multi:softprob",
eval_metric = "mlogloss",
num_class = 3
)
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
<- list(reshape = TRUE)
predict_args <- metric("bacc")
performance_metric <- NULL
performance_metric_args <- FALSE
return_models
# required for grid search and initialization of bayesian optimization
<- expand.grid(
parameter_grid subsample = seq(0.6, 1, .2),
colsample_bytree = seq(0.6, 1, .2),
min_child_weight = seq(1, 5, 4),
learning_rate = seq(0.1, 0.2, 0.1),
max_depth = seq(1, 5, 4)
)# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
<- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
sample_rows <- kdry::mlh_subset(parameter_grid, sample_rows)
parameter_grid
}
# required for bayesian optimization
<- list(
parameter_bounds subsample = c(0.2, 1),
colsample_bytree = c(0.2, 1),
min_child_weight = c(1L, 10L),
learning_rate = c(0.1, 0.2),
max_depth = c(1L, 10L)
)<- list(
optim_args iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
<- mlexperiments::MLTuneParameters$new(
tuner learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),strategy = "grid",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_grid #>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean nrounds subsample colsample_bytree min_child_weight learning_rate max_depth objective
#> 1: 1 1.0107788 27 0.6 0.8 5 0.2 1 multi:softprob
#> 2: 2 0.9822161 35 1.0 0.8 5 0.1 5 multi:softprob
#> 3: 3 1.0097847 100 0.8 0.8 5 0.1 1 multi:softprob
#> 4: 4 0.9850296 20 0.6 0.8 5 0.2 5 multi:softprob
#> 5: 5 0.9807356 34 1.0 0.8 1 0.1 5 multi:softprob
#> 6: 6 0.9734746 46 0.8 0.8 5 0.1 5 multi:softprob
#> eval_metric num_class
#> 1: mlogloss 3
#> 2: mlogloss 3
#> 3: mlogloss 3
#> 4: mlogloss 3
#> 5: mlogloss 3
#> 6: mlogloss 3
<- mlexperiments::MLTuneParameters$new(
tuner learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),strategy = "bayesian",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner
$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner
$split_type <- "stratified"
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_bayesian #>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id subsample colsample_bytree min_child_weight learning_rate max_depth gpUtility acqOptimum inBounds Elapsed
#> 1: 0 1 0.6 0.8 5 0.2 1 NA FALSE TRUE 1.934
#> 2: 0 2 1.0 0.8 5 0.1 5 NA FALSE TRUE 2.181
#> 3: 0 3 0.8 0.8 5 0.1 1 NA FALSE TRUE 2.060
#> 4: 0 4 0.6 0.8 5 0.2 5 NA FALSE TRUE 2.057
#> 5: 0 5 1.0 0.8 1 0.1 5 NA FALSE TRUE 1.422
#> 6: 0 6 0.8 0.8 5 0.1 5 NA FALSE TRUE 1.505
#> Score metric_optim_mean nrounds errorMessage objective eval_metric num_class
#> 1: -1.0093139 1.0093139 51 NA multi:softprob mlogloss 3
#> 2: -0.9842567 0.9842567 34 NA multi:softprob mlogloss 3
#> 3: -1.0097517 1.0097517 79 NA multi:softprob mlogloss 3
#> 4: -0.9766614 0.9766614 17 NA multi:softprob mlogloss 3
#> 5: -0.9851912 0.9851912 28 NA multi:softprob mlogloss 3
#> 6: -0.9755198 0.9755198 42 NA multi:softprob mlogloss 3
<- mlexperiments::MLCrossValidation$new(
validator learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),fold_list = fold_list,
ncores = ncores,
seed = seed
)
$learner_args <- tuner$results$best.setting[-1]
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
head(validator_results)
#> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds objective eval_metric
#> 1: Fold1 0.4685501 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> 2: Fold2 0.4179775 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> 3: Fold3 0.4718162 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> num_class
#> 1: 3
#> 2: 3
#> 3: 3
<- mlexperiments::MLNestedCV$new(
validator learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(validator_results)
#> fold performance nrounds subsample colsample_bytree min_child_weight learning_rate max_depth objective eval_metric
#> 1: Fold1 0.4304667 30 0.8 0.8 5 0.1 5 multi:softprob mlogloss
#> 2: Fold2 0.3907826 33 0.8 0.8 5 0.1 5 multi:softprob mlogloss
#> 3: Fold3 0.4183769 25 0.6 1.0 1 0.1 5 multi:softprob mlogloss
#> num_class
#> 1: 3
#> 2: 3
#> 3: 3
<- mlexperiments::MLNestedCV$new(
validator learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator
$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds objective eval_metric
#> 1: Fold1 0.4607781 0.7285277 0.8178568 1 0.1099728 10 18 multi:softprob mlogloss
#> 2: Fold2 0.4306211 0.5578915 0.7352097 1 0.1099728 10 24 multi:softprob mlogloss
#> 3: Fold3 0.4464739 0.5001911 0.8708509 1 0.1099728 10 19 multi:softprob mlogloss
#> num_class
#> 1: 3
#> 2: 3
#> 3: 3
<- mlexperiments::predictions(
preds_xgboost object = validator,
newdata = test_x
)
<- mlexperiments::performance(
perf_xgboost object = validator,
prediction_results = preds_xgboost,
y_ground_truth = test_y
)
perf_xgboost#> model performance
#> 1: Fold1 0.4628262
#> 2: Fold2 0.4503222
#> 3: Fold3 0.4535445
Here, xgboost
’s weight
-argument is used to rescale the case-weights during the training.
# define the target weights
<- ifelse(train_y == 1, 0.8, ifelse(train_y == 2, 1.2, 1))
y_weights head(y_weights)
#> [1] 1.2 1.2 0.0 0.8 0.8 0.0
<- mlexperiments::MLTuneParameters$new(
tuner_w_weights learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),strategy = "grid",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner_w_weights$learner_args <- c(
tuner_w_weights
learner_args,list(case_weights = y_weights)
)$split_type <- "stratified"
tuner_w_weights
$set_data(
tuner_w_weightsx = train_x,
y = train_y
)
<- tuner_w_weights$execute(k = 3)
tuner_results_grid #>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean nrounds subsample colsample_bytree min_child_weight learning_rate max_depth objective
#> <int> <num> <int> <num> <num> <num> <num> <num> <char>
#> 1: 1 0.9447465 27 0.6 0.8 5 0.2 1 multi:softprob
#> 2: 2 0.9222842 33 1.0 0.8 5 0.1 5 multi:softprob
#> 3: 3 0.9442046 100 0.8 0.8 5 0.1 1 multi:softprob
#> 4: 4 0.9236826 20 0.6 0.8 5 0.2 5 multi:softprob
#> 5: 5 0.9197338 35 1.0 0.8 1 0.1 5 multi:softprob
#> 6: 6 0.9147754 46 0.8 0.8 5 0.1 5 multi:softprob
#> eval_metric num_class
#> <char> <num>
#> 1: mlogloss 3
#> 2: mlogloss 3
#> 3: mlogloss 3
#> 4: mlogloss 3
#> 5: mlogloss 3
#> 6: mlogloss 3
<- mlexperiments::MLCrossValidation$new(
validator learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),fold_list = fold_list,
ncores = ncores,
seed = seed
)
# append the optimized setting from above with the newly created weights
$learner_args <- c(
validator$results$best.setting[-1],
tunerlist("case_weights" = y_weights)
)
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
head(validator_results)
#> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds objective eval_metric
#> <char> <num> <num> <num> <num> <num> <num> <int> <char> <char>
#> 1: Fold1 0.4508447 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> 2: Fold2 0.4185381 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> 3: Fold3 0.4436661 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> num_class
#> <num>
#> 1: 3
#> 2: 3
#> 3: 3
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.