The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

ranger: Regression

library(mlexperiments)
library(mllrnrs)

See https://github.com/kapsner/mllrnrs/blob/main/R/learner_ranger.R for implementation details.

Preprocessing

Import and Prepare Data

library(mlbench)
data("BostonHousing")
dataset <- BostonHousing |>
  data.table::as.data.table() |>
  na.omit()

feature_cols <- colnames(dataset)[1:13]
target_col <- "medv"
cat_vars <- "chas"

General Configurations

seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
  # on cran
  ncores <- 2L
} else {
  ncores <- ifelse(
    test = parallel::detectCores() > 4,
    yes = 4L,
    no = ifelse(
      test = parallel::detectCores() < 2L,
      yes = 1L,
      no = parallel::detectCores()
    )
  )
}
options("mlexperiments.bayesian.max_init" = 10L)

Generate Training- and Test Data

data_split <- splitTools::partition(
  y = dataset[, get(target_col)],
  p = c(train = 0.7, test = 0.3),
  type = "stratified",
  seed = seed
)

train_x <- data.matrix(
  dataset[data_split$train, .SD, .SDcols = feature_cols]
)
train_y <- log(dataset[data_split$train, get(target_col)])


test_x <- data.matrix(
  dataset[data_split$test, .SD, .SDcols = feature_cols]
)
test_y <- log(dataset[data_split$test, get(target_col)])

Generate Training Data Folds

fold_list <- splitTools::create_folds(
  y = train_y,
  k = 3,
  type = "stratified",
  seed = seed
)

Experiments

Prepare Experiments

# required learner arguments, not optimized
learner_args <- NULL

# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- NULL
performance_metric <- metric("rmsle")
performance_metric_args <- NULL
return_models <- FALSE

# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
  num.trees = seq(500, 1000, 500),
  mtry = seq(2, 6, 2),
  min.node.size = seq(1, 9, 4),
  max.depth = seq(1, 9, 4),
  sample.fraction = seq(0.5, 0.8, 0.3)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
  set.seed(123)
  sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
  parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}

# required for bayesian optimization
parameter_bounds <- list(
  num.trees = c(100L, 1000L),
  mtry = c(2L, 9L),
  min.node.size = c(1L, 20L),
  max.depth = c(1L, 40L),
  sample.fraction = c(0.3, 1.)
)
optim_args <- list(
  iters.n = ncores,
  kappa = 3.5,
  acq = "ucb"
)

Hyperparameter Tuning

Bayesian Optimization

tuner <- mlexperiments::MLTuneParameters$new(
  learner = mllrnrs::LearnerRanger$new(),
  strategy = "bayesian",
  ncores = ncores,
  seed = seed
)

tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds

tuner$learner_args <- learner_args
tuner$optim_args <- optim_args

tuner$split_type <- "stratified"

tuner$set_data(
  x = train_x,
  y = train_y,
  cat_vars = cat_vars
)

tuner_results_bayesian <- tuner$execute(k = 3)
#> 
#> Registering parallel backend using 4 cores.

head(tuner_results_bayesian)
#>    Epoch setting_id num.trees mtry min.node.size max.depth sample.fraction gpUtility acqOptimum inBounds Elapsed       Score
#> 1:     0          1       500    2             9         5             0.5        NA      FALSE     TRUE   1.013 -0.04356188
#> 2:     0          2       500    2             5         5             0.8        NA      FALSE     TRUE   1.035 -0.03848441
#> 3:     0          3       500    4             9         9             0.5        NA      FALSE     TRUE   1.064 -0.03375279
#> 4:     0          4      1000    2             9         1             0.5        NA      FALSE     TRUE   0.994 -0.09582667
#> 5:     0          5       500    2             9         1             0.8        NA      FALSE     TRUE   0.070 -0.09470805
#> 6:     0          6      1000    6             1         9             0.5        NA      FALSE     TRUE   0.690 -0.03014795
#>    metric_optim_mean errorMessage
#> 1:        0.04356188           NA
#> 2:        0.03848441           NA
#> 3:        0.03375279           NA
#> 4:        0.09582667           NA
#> 5:        0.09470805           NA
#> 6:        0.03014795           NA

k-Fold Cross Validation

validator <- mlexperiments::MLCrossValidation$new(
  learner = mllrnrs::LearnerRanger$new(),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)

validator$learner_args <- tuner$results$best.setting[-1]

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models

validator$set_data(
  x = train_x,
  y = train_y,
  cat_vars = cat_vars
)

validator_results <- validator$execute()
#> 
#> CV fold: Fold1
#> 
#> CV fold: Fold2
#> 
#> CV fold: Fold3

head(validator_results)
#>     fold performance num.trees mtry min.node.size max.depth sample.fraction
#> 1: Fold1  0.04028795       100    9             1         9               1
#> 2: Fold2  0.05592193       100    9             1         9               1
#> 3: Fold3  0.04012856       100    9             1         9               1

Nested Cross Validation

Inner Bayesian Optimization

validator <- mlexperiments::MLNestedCV$new(
  learner = mllrnrs::LearnerRanger$new(),
  strategy = "bayesian",
  fold_list = fold_list,
  k_tuning = 3L,
  ncores = ncores,
  seed = 312
)

validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"


validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE

validator$set_data(
  x = train_x,
  y = train_y,
  cat_vars = cat_vars
)

validator_results <- validator$execute()
#> 
#> CV fold: Fold1
#> 
#> Registering parallel backend using 4 cores.
#> 
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#> 
#> Registering parallel backend using 4 cores.
#> 
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>                                                                                                                                   
#> Registering parallel backend using 4 cores.

head(validator_results)
#>     fold performance num.trees mtry min.node.size max.depth sample.fraction
#> 1: Fold1  0.04142935       640    7             1         9       0.7460504
#> 2: Fold2  0.05358418       100    9             1         9       1.0000000
#> 3: Fold3  0.04264248       367    4             5         9       0.8388297

Holdout Test Dataset Performance

Predict Outcome in Holdout Test Dataset

preds_ranger <- mlexperiments::predictions(
  object = validator,
  newdata = test_x
)

Evaluate Performance on Holdout Test Dataset

perf_ranger <- mlexperiments::performance(
  object = validator,
  prediction_results = preds_ranger,
  y_ground_truth = test_y,
  type = "regression"
)
perf_ranger
#>    model performance        mse        msle       mae       mape      rmse      rmsle       rsq      sse
#> 1: Fold1  0.04145400 0.02627203 0.001718434 0.1125978 0.03799847 0.1620865 0.04145400 0.8291229 4.072165
#> 2: Fold2  0.04849306 0.03319570 0.002351577 0.1270962 0.04379366 0.1821969 0.04849306 0.7840903 5.145334
#> 3: Fold3  0.03827309 0.02222906 0.001464829 0.1067541 0.03631993 0.1490941 0.03827309 0.8554189 3.445504

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.