# nolint start
library(mlexperiments)
library(mllrnrs)
The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# nolint start
library(mlexperiments)
library(mllrnrs)
See https://github.com/kapsner/mllrnrs/blob/main/R/learner_ranger.R for implementation details.
library(mlbench)
data("DNA")
<- DNA |>
dataset ::as.data.table() |>
data.tablena.omit()
<- colnames(dataset)[160:180]
feature_cols <- "Class" target_col
<- 123
seed if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
<- 2L
ncores else {
} <- ifelse(
ncores test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}options("mlexperiments.bayesian.max_init" = 10L)
<- splitTools::partition(
data_split y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
<- model.matrix(
train_x ~ -1 + .,
$train, .SD, .SDcols = feature_cols]
dataset[data_split
)<- dataset[data_split$train, get(target_col)]
train_y
<- model.matrix(
test_x ~ -1 + .,
$test, .SD, .SDcols = feature_cols]
dataset[data_split
)<- dataset[data_split$test, get(target_col)] test_y
<- splitTools::create_folds(
fold_list y = train_y,
k = 3,
type = "stratified",
seed = seed
)
# required learner arguments, not optimized
<- list(probability = TRUE, classification = TRUE)
learner_args
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
<- list(reshape = TRUE)
predict_args <- metric("bacc")
performance_metric <- NULL
performance_metric_args <- FALSE
return_models
# required for grid search and initialization of bayesian optimization
<- expand.grid(
parameter_grid num.trees = seq(500, 1000, 500),
mtry = seq(2, 6, 2),
min.node.size = seq(1, 9, 4),
max.depth = seq(1, 9, 4),
sample.fraction = seq(0.5, 0.8, 0.3)
)# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
<- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
sample_rows <- kdry::mlh_subset(parameter_grid, sample_rows)
parameter_grid
}
# required for bayesian optimization
<- list(
parameter_bounds num.trees = c(100L, 1000L),
mtry = c(2L, 9L),
min.node.size = c(1L, 20L),
max.depth = c(1L, 40L),
sample.fraction = c(0.3, 1.)
)<- list(
optim_args iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
<- mlexperiments::MLTuneParameters$new(
tuner learner = mllrnrs::LearnerRanger$new(),
strategy = "grid",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_grid #>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> Classification: using 'classification error rate' as optimization metric.
head(tuner_results_grid)
#> setting_id metric_optim_mean num.trees mtry min.node.size max.depth sample.fraction probability classification
#> 1: 1 0.4786887 500 2 9 5 0.5 TRUE TRUE
#> 2: 2 0.4791386 500 2 5 5 0.8 TRUE TRUE
#> 3: 3 0.4419159 500 4 9 9 0.5 TRUE TRUE
#> 4: 4 0.4809325 1000 2 9 1 0.5 TRUE TRUE
#> 5: 5 0.4809325 500 2 9 1 0.8 TRUE TRUE
#> 6: 6 0.4329589 1000 6 1 9 0.5 TRUE TRUE
<- mlexperiments::MLTuneParameters$new(
tuner learner = mllrnrs::LearnerRanger$new(),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner
$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner
$split_type <- "stratified"
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_bayesian #>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id num.trees mtry min.node.size max.depth sample.fraction gpUtility acqOptimum inBounds Elapsed Score
#> 1: 0 1 500 2 9 5 0.5 NA FALSE TRUE 1.597 -0.4791386
#> 2: 0 2 500 2 5 5 0.8 NA FALSE TRUE 1.641 -0.4786887
#> 3: 0 3 500 4 9 9 0.5 NA FALSE TRUE 2.161 -0.4392295
#> 4: 0 4 1000 2 9 1 0.5 NA FALSE TRUE 1.635 -0.4809325
#> 5: 0 5 500 2 9 1 0.8 NA FALSE TRUE 0.416 -0.4809325
#> 6: 0 6 1000 6 1 9 0.5 NA FALSE TRUE 3.373 -0.4378800
#> metric_optim_mean errorMessage probability classification
#> 1: 0.4791386 NA TRUE TRUE
#> 2: 0.4786887 NA TRUE TRUE
#> 3: 0.4392295 NA TRUE TRUE
#> 4: 0.4809325 NA TRUE TRUE
#> 5: 0.4809325 NA TRUE TRUE
#> 6: 0.4378800 NA TRUE TRUE
<- mlexperiments::MLCrossValidation$new(
validator learner = mllrnrs::LearnerRanger$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
$learner_args <- tuner$results$best.setting[-1]
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
head(validator_results)
#> fold performance num.trees mtry min.node.size max.depth sample.fraction probability classification
#> 1: Fold1 0.4206685 500 4 9 9 0.8 TRUE TRUE
#> 2: Fold2 0.4011889 500 4 9 9 0.8 TRUE TRUE
#> 3: Fold3 0.4252033 500 4 9 9 0.8 TRUE TRUE
<- mlexperiments::MLNestedCV$new(
validator learner = mllrnrs::LearnerRanger$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> Classification: using 'classification error rate' as optimization metric.
head(validator_results)
#> fold performance num.trees mtry min.node.size max.depth sample.fraction probability classification
#> 1: Fold1 0.4505456 1000 6 1 9 0.5 TRUE TRUE
#> 2: Fold2 0.4162822 1000 6 1 9 0.5 TRUE TRUE
#> 3: Fold3 0.4508978 1000 6 1 9 0.5 TRUE TRUE
<- mlexperiments::MLNestedCV$new(
validator learner = mllrnrs::LearnerRanger$new(),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = 312
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator
$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance num.trees mtry min.node.size max.depth sample.fraction probability classification
#> 1: Fold1 0.4470914 1000 6 1 9 0.5000000 TRUE TRUE
#> 2: Fold2 0.4419416 636 6 2 12 0.9378338 TRUE TRUE
#> 3: Fold3 0.4737314 388 6 5 14 0.7457303 TRUE TRUE
<- mlexperiments::predictions(
preds_ranger object = validator,
newdata = test_x
)
<- mlexperiments::performance(
perf_ranger object = validator,
prediction_results = preds_ranger,
y_ground_truth = test_y
)
perf_ranger#> model performance
#> 1: Fold1 0.4466305
#> 2: Fold2 0.4601201
#> 3: Fold3 0.4742046
Here, ranger
’s case.weights
-argument is used to rescale the case-weights during the training.
# define the target weights
<- ifelse(train_y == "n", 0.8, ifelse(train_y == "ei", 1.2, 1))
y_weights head(y_weights)
#> [1] 1.2 1.2 0.0 0.8 0.8 0.0
<- mlexperiments::MLTuneParameters$new(
tuner_w_weights learner = mllrnrs::LearnerRanger$new(),
strategy = "grid",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner_w_weights$learner_args <- c(
tuner_w_weights
learner_args,list(case_weights = y_weights)
)$split_type <- "stratified"
tuner_w_weights
$set_data(
tuner_w_weightsx = train_x,
y = train_y
)
<- tuner_w_weights$execute(k = 3)
tuner_results_grid #>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean num.trees mtry min.node.size max.depth sample.fraction probability classification
#> <int> <num> <num> <num> <num> <num> <num> <lgcl> <lgcl>
#> 1: 1 0.4665865 500 2 9 5 0.5 TRUE TRUE
#> 2: 2 0.4656941 500 2 5 5 0.8 TRUE TRUE
#> 3: 3 0.4486635 500 4 9 9 0.5 TRUE TRUE
#> 4: 4 0.4809325 1000 2 9 1 0.5 TRUE TRUE
#> 5: 5 0.4809325 500 2 9 1 0.8 TRUE TRUE
#> 6: 6 0.4544915 1000 6 1 9 0.5 TRUE TRUE
<- mlexperiments::MLCrossValidation$new(
validator learner = mllrnrs::LearnerRanger$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
# append the optimized setting from above with the newly created weights
$learner_args <- c(
validator$results$best.setting[-1],
tunerlist("case_weights" = y_weights)
)
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
head(validator_results)
#> fold performance num.trees mtry min.node.size max.depth sample.fraction probability classification
#> <char> <num> <num> <num> <num> <num> <num> <lgcl> <lgcl>
#> 1: Fold1 0.4565664 500 4 9 9 0.8 TRUE TRUE
#> 2: Fold2 0.4266609 500 4 9 9 0.8 TRUE TRUE
#> 3: Fold3 0.4576471 500 4 9 9 0.8 TRUE TRUE
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.