The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

lightgbm: Binary Classification

library(mlexperiments)
library(mllrnrs)

See https://github.com/kapsner/mllrnrs/blob/main/R/learner_lightgbm.R for implementation details.

Preprocessing

Import and Prepare Data

library(mlbench)
data("PimaIndiansDiabetes2")
dataset <- PimaIndiansDiabetes2 |>
  data.table::as.data.table() |>
  na.omit()

feature_cols <- colnames(dataset)[1:8]
target_col <- "diabetes"

General Configurations

seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
  # on cran
  ncores <- 2L
} else {
  ncores <- ifelse(
    test = parallel::detectCores() > 4,
    yes = 4L,
    no = ifelse(
      test = parallel::detectCores() < 2L,
      yes = 1L,
      no = parallel::detectCores()
    )
  )
}
options("mlexperiments.bayesian.max_init" = 10L)
options("mlexperiments.optim.lgb.nrounds" = 100L)
options("mlexperiments.optim.lgb.early_stopping_rounds" = 10L)

Generate Training- and Test Data

data_split <- splitTools::partition(
  y = dataset[, get(target_col)],
  p = c(train = 0.7, test = 0.3),
  type = "stratified",
  seed = seed
)

train_x <- model.matrix(
  ~ -1 + .,
  dataset[data_split$train, .SD, .SDcols = feature_cols]
)
train_y <- as.integer(dataset[data_split$train, get(target_col)]) - 1L


test_x <- model.matrix(
  ~ -1 + .,
  dataset[data_split$test, .SD, .SDcols = feature_cols]
)
test_y <- as.integer(dataset[data_split$test, get(target_col)]) - 1L

Generate Training Data Folds

fold_list <- splitTools::create_folds(
  y = train_y,
  k = 3,
  type = "stratified",
  seed = seed
)

Experiments

Prepare Experiments

# required learner arguments, not optimized
learner_args <- list(
  max_depth = -1L,
  verbose = -1L,
  objective = "binary",
  metric = "binary_logloss"
)

# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- NULL
performance_metric <- metric("auc")
performance_metric_args <- list(positive = "1")
return_models <- FALSE

# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
  bagging_fraction = seq(0.6, 1, .2),
  feature_fraction = seq(0.6, 1, .2),
  min_data_in_leaf = seq(2, 10, 2),
  learning_rate = seq(0.1, 0.2, 0.1),
  num_leaves = seq(2, 20, 4)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
  set.seed(123)
  sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
  parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}

# required for bayesian optimization
parameter_bounds <- list(
  bagging_fraction = c(0.2, 1),
  feature_fraction = c(0.2, 1),
  min_data_in_leaf = c(2L, 12L),
  learning_rate = c(0.1, 0.2),
  num_leaves =  c(2L, 20L)
)
optim_args <- list(
  iters.n = ncores,
  kappa = 3.5,
  acq = "ucb"
)

Hyperparameter Tuning

Bayesian Optimization

tuner <- mlexperiments::MLTuneParameters$new(
  learner = mllrnrs::LearnerLightgbm$new(
    metric_optimization_higher_better = FALSE
  ),
  strategy = "bayesian",
  ncores = ncores,
  seed = seed
)

tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds

tuner$learner_args <- learner_args
tuner$optim_args <- optim_args

tuner$split_type <- "stratified"

tuner$set_data(
  x = train_x,
  y = train_y
)

tuner_results_bayesian <- tuner$execute(k = 3)
#> 
#> Registering parallel backend using 4 cores.

head(tuner_results_bayesian)
#>    Epoch setting_id bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves gpUtility acqOptimum inBounds
#> 1:     0          1              0.6              0.6                4           0.2         18        NA      FALSE     TRUE
#> 2:     0          2              0.8              1.0               10           0.2          6        NA      FALSE     TRUE
#> 3:     0          3              0.8              0.8                4           0.1          2        NA      FALSE     TRUE
#> 4:     0          4              1.0              0.8                4           0.1         10        NA      FALSE     TRUE
#> 5:     0          5              1.0              0.6                6           0.2         18        NA      FALSE     TRUE
#> 6:     0          6              1.0              1.0                8           0.1         14        NA      FALSE     TRUE
#>    Elapsed      Score metric_optim_mean nrounds errorMessage max_depth verbose objective         metric
#> 1:   0.972 -0.4270896         0.4270896      15           NA        -1      -1    binary binary_logloss
#> 2:   0.951 -0.3978536         0.3978536      14           NA        -1      -1    binary binary_logloss
#> 3:   0.974 -0.4011304         0.4011304      95           NA        -1      -1    binary binary_logloss
#> 4:   0.971 -0.4021737         0.4021737      30           NA        -1      -1    binary binary_logloss
#> 5:   0.039 -0.4034704         0.4034704      14           NA        -1      -1    binary binary_logloss
#> 6:   0.045 -0.3955430         0.3955430      28           NA        -1      -1    binary binary_logloss

k-Fold Cross Validation

validator <- mlexperiments::MLCrossValidation$new(
  learner = mllrnrs::LearnerLightgbm$new(
    metric_optimization_higher_better = FALSE
  ),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)

validator$learner_args <- tuner$results$best.setting[-1]

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models

validator$set_data(
  x = train_x,
  y = train_y
)

validator_results <- validator$execute()
#> 
#> CV fold: Fold1
#> 
#> CV fold: Fold2
#> 
#> CV fold: Fold3

head(validator_results)
#>     fold performance bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves nrounds max_depth verbose
#> 1: Fold1   0.8683236        0.4344866                1                2           0.1          5      38        -1      -1
#> 2: Fold2   0.8841883        0.4344866                1                2           0.1          5      38        -1      -1
#> 3: Fold3   0.8846806        0.4344866                1                2           0.1          5      38        -1      -1
#>    objective         metric
#> 1:    binary binary_logloss
#> 2:    binary binary_logloss
#> 3:    binary binary_logloss

Nested Cross Validation

Inner Bayesian Optimization

validator <- mlexperiments::MLNestedCV$new(
  learner = mllrnrs::LearnerLightgbm$new(
    metric_optimization_higher_better = FALSE
  ),
  strategy = "bayesian",
  fold_list = fold_list,
  k_tuning = 3L,
  ncores = ncores,
  seed = seed
)

validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"


validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE

validator$set_data(
  x = train_x,
  y = train_y
)

validator_results <- validator$execute()
#> 
#> CV fold: Fold1
#> 
#> Registering parallel backend using 4 cores.
#> 
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#> 
#> Registering parallel backend using 4 cores.
#> 
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>                                                                                                                                   
#> Registering parallel backend using 4 cores.

head(validator_results)
#>     fold performance bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves nrounds max_depth verbose
#> 1: Fold1   0.8572184              0.8        0.8000000                4           0.1          2      72        -1      -1
#> 2: Fold2   0.8730830              1.0        0.6198464               10           0.1         20      23        -1      -1
#> 3: Fold3   0.8725269              0.8        0.8000000                4           0.1          2      53        -1      -1
#>    objective         metric
#> 1:    binary binary_logloss
#> 2:    binary binary_logloss
#> 3:    binary binary_logloss

Holdout Test Dataset Performance

Predict Outcome in Holdout Test Dataset

preds_lightgbm <- mlexperiments::predictions(
  object = validator,
  newdata = test_x
)

Evaluate Performance on Holdout Test Dataset

perf_lightgbm <- mlexperiments::performance(
  object = validator,
  prediction_results = preds_lightgbm,
  y_ground_truth = test_y,
  type = "binary"
)
perf_lightgbm
#>    model performance       auc     prauc sensitivity specificity       ppv       npv tn tp fn fp       tnr       tpr       fnr
#> 1: Fold1   0.8075300 0.8075300 0.6470427   0.4871795   0.8607595 0.6333333 0.7727273 68 19 20 11 0.8607595 0.4871795 0.5128205
#> 2: Fold2   0.7695553 0.7695553 0.5825168   0.3846154   0.8987342 0.6521739 0.7473684 71 15 24  8 0.8987342 0.3846154 0.6153846
#> 3: Fold3   0.7914638 0.7914638 0.6164725   0.4615385   0.8734177 0.6428571 0.7666667 69 18 21 10 0.8734177 0.4615385 0.5384615
#>          fpr    bbrier       acc        ce     fbeta
#> 1: 0.1392405 0.1632361 0.7372881 0.2627119 0.5507246
#> 2: 0.1012658 0.1851544 0.7288136 0.2711864 0.4838710
#> 3: 0.1265823 0.1741526 0.7372881 0.2627119 0.5373134

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.