# nolint start
library(mlexperiments)
The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# nolint start
library(mlexperiments)
See https://github.com/kapsner/mlexperiments/blob/main/R/learner_rpart.R for implementation details.
library(mlbench)
data("PimaIndiansDiabetes2")
<- PimaIndiansDiabetes2 |>
dataset ::as.data.table() |>
data.tablena.omit()
<- colnames(dataset)[1:8]
feature_cols <- "diabetes" target_col
<- 123
seed if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
<- 2L
ncores else {
} <- ifelse(
ncores test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}options("mlexperiments.bayesian.max_init" = 10L)
<- splitTools::partition(
data_split y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
<- model.matrix(
train_x ~ -1 + .,
$train, .SD, .SDcols = feature_cols]
dataset[data_split
)<- dataset[data_split$train, get(target_col)]
train_y
<- model.matrix(
test_x ~ -1 + .,
$test, .SD, .SDcols = feature_cols]
dataset[data_split
)<- dataset[data_split$test, get(target_col)] test_y
<- splitTools::create_folds(
fold_list y = train_y,
k = 3,
type = "stratified",
seed = seed
)
# required learner arguments, not optimized
<- list(method = "class")
learner_args
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
<- list(type = "prob")
predict_args <- metric("auc")
performance_metric <- list(positive = "pos")
performance_metric_args <- FALSE
return_models
# required for grid search and initialization of bayesian optimization
<- expand.grid(
parameter_grid minsplit = seq(2L, 82L, 10L),
cp = seq(0.01, 0.1, 0.01),
maxdepth = seq(2L, 30L, 5L)
)# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
<- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
sample_rows <- kdry::mlh_subset(parameter_grid, sample_rows)
parameter_grid
}
# required for bayesian optimization
<- list(
parameter_bounds minsplit = c(2L, 100L),
cp = c(0.01, 0.1),
maxdepth = c(2L, 30L)
)<- list(
optim_args iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
<- mlexperiments::MLTuneParameters$new(
tuner learner = LearnerRpart$new(),
strategy = "grid",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_grid #>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=======================================================================================>----------] 9/10 ( 90%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=================================================================================================] 10/10 (100%)
#> Classification: using 'classification error rate' as optimization metric.
head(tuner_results_grid)
#> setting_id metric_optim_mean minsplit cp maxdepth method
#> 1: 1 0.1860709 2 0.07 22 class
#> 2: 2 0.1860709 32 0.02 27 class
#> 3: 3 0.1860709 72 0.10 7 class
#> 4: 4 0.1860709 32 0.09 27 class
#> 5: 5 0.1860709 52 0.02 12 class
#> 6: 6 0.1860709 2 0.04 7 class
<- mlexperiments::MLTuneParameters$new(
tuner learner = LearnerRpart$new(),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner
$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner
$split_type <- "stratified"
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_bayesian #>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id minsplit cp maxdepth gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean errorMessage method
#> 1: 0 1 2 0.07 22 NA FALSE TRUE 0.044 -0.1860709 0.1860709 NA class
#> 2: 0 2 32 0.02 27 NA FALSE TRUE 0.044 -0.1860709 0.1860709 NA class
#> 3: 0 3 72 0.10 7 NA FALSE TRUE 0.044 -0.1860709 0.1860709 NA class
#> 4: 0 4 32 0.09 27 NA FALSE TRUE 0.044 -0.1860709 0.1860709 NA class
#> 5: 0 5 52 0.02 12 NA FALSE TRUE 0.020 -0.1860709 0.1860709 NA class
#> 6: 0 6 2 0.04 7 NA FALSE TRUE 0.021 -0.1860709 0.1860709 NA class
<- mlexperiments::MLCrossValidation$new(
validator learner = LearnerRpart$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
$learner_args <- tuner$results$best.setting[-1]
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
head(validator_results)
#> fold performance minsplit cp maxdepth method
#> 1: Fold1 0.8323638 2 0.07 22 class
#> 2: Fold2 0.7342676 2 0.07 22 class
#> 3: Fold3 0.7959299 2 0.07 22 class
<- mlexperiments::MLNestedCV$new(
validator learner = LearnerRpart$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> CV fold: Fold2
#> CV progress [======================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> CV fold: Fold3
#> CV progress [==========================================================================================================] 3/3 (100%)
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
head(validator_results)
#> fold performance minsplit cp maxdepth method
#> 1: Fold1 0.7496034 42 0.02 2 class
#> 2: Fold2 0.6845584 42 0.02 2 class
#> 3: Fold3 0.7959299 2 0.07 22 class
<- mlexperiments::MLNestedCV$new(
validator learner = LearnerRpart$new(),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator
$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [======================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [==========================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance minsplit cp maxdepth method
#> 1: Fold1 0.7496034 42 0.02 2 class
#> 2: Fold2 0.6845584 42 0.02 2 class
#> 3: Fold3 0.7959299 2 0.07 22 class
See https://github.com/kapsner/mlexperiments/blob/main/R/learner_glm.R for implementation details.
<- mlexperiments::MLCrossValidation$new(
validator_glm learner = LearnerGlm$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
$learner_args <- list(family = binomial(link = "logit"))
validator_glm$predict_args <- list(type = "response")
validator_glm$performance_metric <- performance_metric
validator_glm$performance_metric_args <- performance_metric_args
validator_glm$return_models <- TRUE
validator_glm
$set_data(
validator_glmx = train_x,
y = train_y
)
<- validator_glm$execute()
validator_glm_results #>
#> CV fold: Fold1
#> Parameter 'ncores' is ignored for learner 'LearnerGlm'.
#>
#> CV fold: Fold2
#> Parameter 'ncores' is ignored for learner 'LearnerGlm'.
#>
#> CV fold: Fold3
#> Parameter 'ncores' is ignored for learner 'LearnerGlm'.
head(validator_glm_results)
#> fold performance
#> 1: Fold1 0.8746695
#> 2: Fold2 0.8751983
#> 3: Fold3 0.8801583
::validate_fold_equality(
mlexperimentsexperiments = list(validator, validator_glm)
)#>
#> Testing for identical folds in 1 and 2.
#>
#> Testing for identical folds in 2 and 1.
<- mlexperiments::predictions(
preds_rpart object = validator,
newdata = test_x
)
<- mlexperiments::predictions(
preds_glm object = validator_glm,
newdata = test_x
)
<- mlexperiments::performance(
perf_rpart object = validator,
prediction_results = preds_rpart,
y_ground_truth = test_y,
type = "binary"
)
<- mlexperiments::performance(
perf_glm object = validator_glm,
prediction_results = preds_glm,
y_ground_truth = test_y,
type = "binary"
)
# combine results for plotting
<- rbind(
final_results cbind(algorithm = "rpart", perf_rpart),
cbind(algorithm = "glm", perf_glm)
)
# p <- ggpubr::ggdotchart(
# data = final_results,
# x = "algorithm",
# y = "auc",
# color = "model",
# rotate = TRUE
# )
# p
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.