The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

mixpower

mixpower provides simulation-based power analysis for Gaussian linear mixed-effects models.

CI expectations

mixpower 0.1.0

Sensitivity analysis

d <- mp_design(clusters = list(subject = 30), trials_per_cell = 4)
a <- mp_assumptions(
  fixed_effects = list(`(Intercept)` = 0, condition = 0.3),
  residual_sd = 1
)
scn <- mp_scenario_lme4(
  y ~ condition + (1 | subject),
  design = d,
  assumptions = a
)

sens <- mp_sensitivity(
  scn,
  vary = list(`fixed_effects.condition` = c(0.2, 0.4, 0.6)),
  nsim = 50,
  seed = 123
)
plot(sens)

Power curve and sample-size solver

d <- mp_design(clusters = list(subject = 30), trials_per_cell = 4)
a <- mp_assumptions(
  fixed_effects = list(`(Intercept)` = 0, condition = 0.3),
  residual_sd = 1
)
scn <- mp_scenario_lme4(
  y ~ condition + (1 | subject),
  design = d,
  assumptions = a
)

curve <- mp_power_curve(
  scn,
  vary = list(`clusters.subject` = c(20, 30, 40, 50)),
  nsim = 50,
  seed = 123
)
plot(curve)

solve <- mp_solve_sample_size(
  scn,
  parameter = "clusters.subject",
  grid = c(20, 30, 40, 50),
  target_power = 0.8,
  nsim = 50,
  seed = 123
)
solve$solution

Quick Wald vs LRT compare

d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
  fixed_effects = list(`(Intercept)` = 0, condition = 0.4),
  residual_sd = 1,
  icc = list(subject = 0.1)
)

scn_wald <- mp_scenario_lme4(
  y ~ condition + (1 | subject),
  design = d, assumptions = a,
  test_method = "wald"
)

scn_lrt <- mp_scenario_lme4(
  y ~ condition + (1 | subject),
  design = d, assumptions = a,
  test_method = "lrt",
  null_formula = y ~ 1 + (1 | subject)
)

vary_spec <- list(`clusters.subject` = c(30, 50, 80))
sens_wald <- mp_sensitivity(scn_wald, vary = vary_spec, nsim = 50, seed = 123)
sens_lrt  <- mp_sensitivity(scn_lrt,  vary = vary_spec, nsim = 50, seed = 123)

Wald vs LRT sensitivity comparison

d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
  fixed_effects = list(`(Intercept)` = 0, condition = 0.4),
  residual_sd = 1,
  icc = list(subject = 0.1)
)

scn_wald <- mp_scenario_lme4(
  y ~ condition + (1 | subject),
  design = d,
  assumptions = a,
  predictor = "condition",
  subject = "subject",
  outcome = "y",
  test_method = "wald"
)

scn_lrt <- mp_scenario_lme4(
  y ~ condition + (1 | subject),
  design = d,
  assumptions = a,
  predictor = "condition",
  subject = "subject",
  outcome = "y",
  test_method = "lrt",
  null_formula = y ~ 1 + (1 | subject)
)

vary_spec <- list(`clusters.subject` = c(30, 50, 80))

sens_wald <- mp_sensitivity(scn_wald, vary = vary_spec, nsim = 50, seed = 123)
sens_lrt  <- mp_sensitivity(scn_lrt,  vary = vary_spec, nsim = 50, seed = 123)

comp <- rbind(
  transform(sens_wald$results, method = "wald"),
  transform(sens_lrt$results,  method = "lrt")
)

comp

wald_dat <- comp[comp$method == "wald", ]
lrt_dat  <- comp[comp$method == "lrt", ]

x <- "clusters.subject"

plot(
  wald_dat[[x]], wald_dat$estimate,
  type = "b", pch = 16, lty = 1,
  ylim = c(0, 1),
  xlab = x, ylab = "Power estimate",
  col = "steelblue"
)
lines(
  lrt_dat[[x]], lrt_dat$estimate,
  type = "b", pch = 17, lty = 2,
  col = "firebrick"
)
legend(
  "bottomright",
  legend = c("Wald", "LRT"),
  col = c("steelblue", "firebrick"),
  lty = c(1, 2), pch = c(16, 17), bty = "n"
)

diag_comp <- comp[, c(
  "method",
  "clusters.subject",
  "estimate", "mcse", "conf_low", "conf_high",
  "failure_rate", "singular_rate", "n_effective", "nsim"
)]

diag_comp[order(diag_comp$method, diag_comp$`clusters.subject`), ]

Binomial GLMM power (binary outcome)

d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
  fixed_effects = list(`(Intercept)` = 0, condition = 0.5),
  residual_sd = 1,
  icc = list(subject = 0.4)
)

scn_bin <- mp_scenario_lme4_binomial(
  y ~ condition + (1 | subject),
  design = d,
  assumptions = a,
  test_method = "wald"
)

res_bin <- mp_power(scn_bin, nsim = 50, seed = 123)
summary(res_bin)

Count outcomes (Poisson vs Negative Binomial)

d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
  fixed_effects = list(`(Intercept)` = 0, condition = 0.4),
  residual_sd = 1,
  icc = list(subject = 0.3)
)

# Count outcome (Poisson GLMM)
scn_pois <- mp_scenario_lme4_poisson(
  y ~ condition + (1 | subject),
  design = d,
  assumptions = a,
  test_method = "wald"
)

# Over-dispersed count outcome (Negative Binomial)
a_nb <- a
a_nb$theta <- 1.5
scn_nb <- mp_scenario_lme4_nb(
  y ~ condition + (1 | subject),
  design = d,
  assumptions = a_nb,
  test_method = "wald"
)

Poisson GLMM power (count outcome)

d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
  fixed_effects = list(`(Intercept)` = 0, condition = 0.4),
  residual_sd = 1,
  icc = list(subject = 0.3)
)

scn_pois <- mp_scenario_lme4_poisson(
  y ~ condition + (1 | subject),
  design = d,
  assumptions = a,
  test_method = "wald"
)

res_pois <- mp_power(scn_pois, nsim = 50, seed = 123)
summary(res_pois)

Negative Binomial GLMM power (over-dispersed counts)

d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
  fixed_effects = list(`(Intercept)` = 0, condition = 0.4),
  residual_sd = 1,
  icc = list(subject = 0.3)
)
a$theta <- 1.5

scn_nb <- mp_scenario_lme4_nb(
  y ~ condition + (1 | subject),
  design = d,
  assumptions = a,
  test_method = "wald"
)

res_nb <- mp_power(scn_nb, nsim = 50, seed = 123)
summary(res_nb)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.