The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
mixpower provides simulation-based power analysis for Gaussian linear mixed-effects models.
R-CMD-check: full multi-OS package checks (release,
devel, oldrel-1).tests: quick devtools::test() on PRs.coverage: runs tests then uploads coverage.pkgdown: builds and deploys docs from
main.d <- mp_design(clusters = list(subject = 30), trials_per_cell = 4)
a <- mp_assumptions(
fixed_effects = list(`(Intercept)` = 0, condition = 0.3),
residual_sd = 1
)
scn <- mp_scenario_lme4(
y ~ condition + (1 | subject),
design = d,
assumptions = a
)
sens <- mp_sensitivity(
scn,
vary = list(`fixed_effects.condition` = c(0.2, 0.4, 0.6)),
nsim = 50,
seed = 123
)
plot(sens)d <- mp_design(clusters = list(subject = 30), trials_per_cell = 4)
a <- mp_assumptions(
fixed_effects = list(`(Intercept)` = 0, condition = 0.3),
residual_sd = 1
)
scn <- mp_scenario_lme4(
y ~ condition + (1 | subject),
design = d,
assumptions = a
)
curve <- mp_power_curve(
scn,
vary = list(`clusters.subject` = c(20, 30, 40, 50)),
nsim = 50,
seed = 123
)
plot(curve)
solve <- mp_solve_sample_size(
scn,
parameter = "clusters.subject",
grid = c(20, 30, 40, 50),
target_power = 0.8,
nsim = 50,
seed = 123
)
solve$solutiond <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
fixed_effects = list(`(Intercept)` = 0, condition = 0.4),
residual_sd = 1,
icc = list(subject = 0.1)
)
scn_wald <- mp_scenario_lme4(
y ~ condition + (1 | subject),
design = d, assumptions = a,
test_method = "wald"
)
scn_lrt <- mp_scenario_lme4(
y ~ condition + (1 | subject),
design = d, assumptions = a,
test_method = "lrt",
null_formula = y ~ 1 + (1 | subject)
)
vary_spec <- list(`clusters.subject` = c(30, 50, 80))
sens_wald <- mp_sensitivity(scn_wald, vary = vary_spec, nsim = 50, seed = 123)
sens_lrt <- mp_sensitivity(scn_lrt, vary = vary_spec, nsim = 50, seed = 123)d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
fixed_effects = list(`(Intercept)` = 0, condition = 0.4),
residual_sd = 1,
icc = list(subject = 0.1)
)
scn_wald <- mp_scenario_lme4(
y ~ condition + (1 | subject),
design = d,
assumptions = a,
predictor = "condition",
subject = "subject",
outcome = "y",
test_method = "wald"
)
scn_lrt <- mp_scenario_lme4(
y ~ condition + (1 | subject),
design = d,
assumptions = a,
predictor = "condition",
subject = "subject",
outcome = "y",
test_method = "lrt",
null_formula = y ~ 1 + (1 | subject)
)
vary_spec <- list(`clusters.subject` = c(30, 50, 80))
sens_wald <- mp_sensitivity(scn_wald, vary = vary_spec, nsim = 50, seed = 123)
sens_lrt <- mp_sensitivity(scn_lrt, vary = vary_spec, nsim = 50, seed = 123)
comp <- rbind(
transform(sens_wald$results, method = "wald"),
transform(sens_lrt$results, method = "lrt")
)
comp
wald_dat <- comp[comp$method == "wald", ]
lrt_dat <- comp[comp$method == "lrt", ]
x <- "clusters.subject"
plot(
wald_dat[[x]], wald_dat$estimate,
type = "b", pch = 16, lty = 1,
ylim = c(0, 1),
xlab = x, ylab = "Power estimate",
col = "steelblue"
)
lines(
lrt_dat[[x]], lrt_dat$estimate,
type = "b", pch = 17, lty = 2,
col = "firebrick"
)
legend(
"bottomright",
legend = c("Wald", "LRT"),
col = c("steelblue", "firebrick"),
lty = c(1, 2), pch = c(16, 17), bty = "n"
)
diag_comp <- comp[, c(
"method",
"clusters.subject",
"estimate", "mcse", "conf_low", "conf_high",
"failure_rate", "singular_rate", "n_effective", "nsim"
)]
diag_comp[order(diag_comp$method, diag_comp$`clusters.subject`), ]d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
fixed_effects = list(`(Intercept)` = 0, condition = 0.5),
residual_sd = 1,
icc = list(subject = 0.4)
)
scn_bin <- mp_scenario_lme4_binomial(
y ~ condition + (1 | subject),
design = d,
assumptions = a,
test_method = "wald"
)
res_bin <- mp_power(scn_bin, nsim = 50, seed = 123)
summary(res_bin)d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
fixed_effects = list(`(Intercept)` = 0, condition = 0.4),
residual_sd = 1,
icc = list(subject = 0.3)
)
# Count outcome (Poisson GLMM)
scn_pois <- mp_scenario_lme4_poisson(
y ~ condition + (1 | subject),
design = d,
assumptions = a,
test_method = "wald"
)
# Over-dispersed count outcome (Negative Binomial)
a_nb <- a
a_nb$theta <- 1.5
scn_nb <- mp_scenario_lme4_nb(
y ~ condition + (1 | subject),
design = d,
assumptions = a_nb,
test_method = "wald"
)d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
fixed_effects = list(`(Intercept)` = 0, condition = 0.4),
residual_sd = 1,
icc = list(subject = 0.3)
)
scn_pois <- mp_scenario_lme4_poisson(
y ~ condition + (1 | subject),
design = d,
assumptions = a,
test_method = "wald"
)
res_pois <- mp_power(scn_pois, nsim = 50, seed = 123)
summary(res_pois)d <- mp_design(clusters = list(subject = 40), trials_per_cell = 8)
a <- mp_assumptions(
fixed_effects = list(`(Intercept)` = 0, condition = 0.4),
residual_sd = 1,
icc = list(subject = 0.3)
)
a$theta <- 1.5
scn_nb <- mp_scenario_lme4_nb(
y ~ condition + (1 | subject),
design = d,
assumptions = a,
test_method = "wald"
)
res_nb <- mp_power(scn_nb, nsim = 50, seed = 123)
summary(res_nb)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.