The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Mixed, low-rank, and sparse multivariate regression (mixedLSR) provides tools for performing mixture regression when the coefficient matrix is low-rank and sparse. mixedLSR allows subgroup identification by alternating optimization with simulated annealing to encourage global optimum convergence. This method is data-adaptive, automatically performing parameter selection to identify low-rank substructures in the coefficient matrix.
library(mixedLSR)
set.seed(1)
To demonstrate mixedLSR, we simulate a heterogeneous population where the coefficient matrix is low-rank and sparse and the number of coefficients to estimate is much larger than the sample size.
<- simulate_lsr(N = 100, k = 2, p = 30, m = 35) sim
Then, we compute the model. We limit the number of iterations the model can run.
<- mixed_lsr(sim$x, sim$y, k = 2, alt_iter = 1, anneal_iter = 10, em_iter = 10, verbose = TRUE)
model #> mixedLSR Start: 1
#> Selecting Lambda..................................................
#> EM Step.....
#> Simulated Annealing Step
#> Full Cycle 1
#> Computing Final Model...
#> Done!
Next, we can evaluate the clustering performance of mixedLSR by viewing a cross-tabulation of the partition labels and by computing the adjusted Rand index (ARI). In this case, mixedLSR perfectly clustered the data.
table(sim$true, model$assign)
#>
#> 1 2
#> 1 52 0
#> 2 0 48
<- mclust::adjustedRandIndex(sim$true, model$assign)
ari print(paste("ARI:",ari))
#> [1] "ARI: 1"
Lastly, we can view a heatmap of the coefficient matrices and compare them to the true simulated matrices.
plot_lsr(model$a)
plot_lsr(sim$a)
Reproducibility
sessionInfo()
#> R version 4.1.3 (2022-03-10)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19044)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=C
#> [2] LC_CTYPE=English_United States.1252
#> [3] LC_MONETARY=English_United States.1252
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=English_United States.1252
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] mixedLSR_0.1.0
#>
#> loaded via a namespace (and not attached):
#> [1] highr_0.9 bslib_0.4.0 compiler_4.1.3 pillar_1.8.1
#> [5] jquerylib_0.1.4 tools_4.1.3 mclust_5.4.10 digest_0.6.29
#> [9] viridisLite_0.4.1 lattice_0.20-45 jsonlite_1.8.1 evaluate_0.16
#> [13] lifecycle_1.0.2 tibble_3.1.8 gtable_0.3.1 pkgconfig_2.0.3
#> [17] rlang_1.0.6 Matrix_1.5-1 DBI_1.1.3 cli_3.3.0
#> [21] rstudioapi_0.14 yaml_2.3.5 xfun_0.33 fastmap_1.1.0
#> [25] stringr_1.4.1 dplyr_1.0.10 knitr_1.40 generics_0.1.3
#> [29] sass_0.4.2 vctrs_0.4.2 tidyselect_1.1.2 grid_4.1.3
#> [33] glue_1.6.2 R6_2.5.1 grpreg_3.4.0 fansi_1.0.3
#> [37] rmarkdown_2.16 farver_2.1.1 purrr_0.3.4 ggplot2_3.3.6
#> [41] magrittr_2.0.3 scales_1.2.1 htmltools_0.5.3 MASS_7.3-58.1
#> [45] assertthat_0.2.1 colorspace_2.0-3 labeling_0.4.2 utf8_1.2.2
#> [49] stringi_1.7.6 munsell_0.5.0 cachem_1.0.6
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.