The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

misaem package

Introduction

misaem is a package to perform linear regression and logistic regression with missing data, under MCAR (Missing completely at random) and MAR (Missing at random) mechanisms. The covariates are assumed to be continuous variables. The methodology implemented is based on maximization of the observed likelihood using EM-types of algorithms. The package includes:

  1. Parameters estimation.
  2. Estimation of standard deviation for estimated parameters.
  3. Model selection procedure based on BIC.

Installation of package

Now you can install the package misaem from CRAN.

install.packages("misaem")

Using the misaem package

Basically,

  1. miss.glm is the main function performing logistic regression with missing values.
  2. miss.lm is the main function performing linear regression with missing values.

For more details, You can find the vignette, which illustrate the basic and further usage of misaem package:

library(misaem)
vignette('misaem')

Reference

Logistic Regression with Missing Covariates – Parameter Estimation, Model Selection and Prediction (2020, Jiang W., Josse J., Lavielle M., TraumaBase Group), Computational Statistics & Data Analysis.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.