The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

  1. Mirai Clusters - Base R

Table of Contents

  1. Alternative Communications Backend for R
  2. Foreach Support

Alternative Communications Backend for R

mirai provides an alternative communications backend for R. This functionality was developed to fulfil a request by R Core at R Project Sprint 2023.

A ‘miraiCluster’ is recognised as one of the official cluster types, and may be created by parallel::makeCluster(type = "MIRAI") from R 4.5 onwards. This function calls make_cluster(), which may also be used to directly create a ‘miraiCluster’.

Created clusters may be used for any function in the parallel base package such as parallel::clusterApply() or parallel::parLapply(), or the load-balanced versions such as parallel::parLapplyLB().

library(parallel)
library(mirai)

cl <- makeCluster(6, type = "MIRAI")
cl
#> < miraiCluster | ID: `0` nodes: 6 active: TRUE >
parLapply(cl, iris, mean)
#> $Sepal.Length
#> [1] 5.843333
#> 
#> $Sepal.Width
#> [1] 3.057333
#> 
#> $Petal.Length
#> [1] 3.758
#> 
#> $Petal.Width
#> [1] 1.199333
#> 
#> $Species
#> [1] NA

status() may be called on a ’miraiCluster` to query the number of connected nodes at any time.

status(cl)
#> $connections
#> [1] 6
#> 
#> $daemons
#> [1] "ipc:///tmp/468d15baad12987297924d3a"
stopCluster(cl)

Making a cluster specifying ‘url’ without ‘remote’ causes the shell commands for manual deployment of nodes to be printed to the console.

cl <- make_cluster(n = 2, url = host_url())
#> Shell commands for deployment on nodes:
#> 
#> [1]
#> Rscript -e 'mirai::daemon("tcp://192.168.2.179:49947",dispatcher=FALSE,cleanup=FALSE,rs=c(10407,1353351353,-1043629786,-29560465,-1602291484,-248192363,-1183841710))'
#> 
#> [2]
#> Rscript -e 'mirai::daemon("tcp://192.168.2.179:49947",dispatcher=FALSE,cleanup=FALSE,rs=c(10407,-440398556,800923107,1329159622,2121404046,1811662990,825393618))'
stop_cluster(cl)

« Back to ToC

Foreach Support

A ‘miraiCluster’ may also be registered by doParallel for use with the foreach package.

Running some parallel examples for the foreach() function:

library(doParallel)
#> Loading required package: foreach
#> Loading required package: iterators
library(foreach)

cl <- makeCluster(6, type = "MIRAI")
registerDoParallel(cl)

# normalize the rows of a matrix
m <- matrix(rnorm(9), 3, 3)
foreach(i = 1:nrow(m), .combine = rbind) %dopar%
  (m[i, ] / mean(m[i, ]))
#>                [,1]        [,2]      [,3]
#> result.1   1.101225   0.4266552  1.472120
#> result.2  -1.268963   1.0011693  3.267793
#> result.3 -10.306468 -20.4872993 33.793767

# simple parallel matrix multiply
a <- matrix(1:16, 4, 4)
b <- t(a)
foreach(b = iterators::iter(b, by='col'), .combine = cbind) %dopar%
  (a %*% b)
#>      [,1] [,2] [,3] [,4]
#> [1,]  276  304  332  360
#> [2,]  304  336  368  400
#> [3,]  332  368  404  440
#> [4,]  360  400  440  480

stopCluster(cl)

« Back to ToC

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.