The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

mirai - Parallel Integration

Parallel Integration

mirai provides an alternative communications backend for R. This functionality was developed to fulfil a request by R Core at R Project Sprint 2023.

make_cluster() creates a cluster object of class ‘miraiCluster’, which is fully-compatible with parallel cluster types.

Created clusters may be used for any function in the parallel base package such as parallel::clusterApply() or parallel::parLapply(), or the load-balanced versions such as parallel::parLapplyLB().

library(mirai)

cl <- make_cluster(4)
cl
#> < miraiCluster | ID: `0` nodes: 4 active: TRUE >
parallel::parLapply(cl, iris, mean)
#> $Sepal.Length
#> [1] 5.843333
#> 
#> $Sepal.Width
#> [1] 3.057333
#> 
#> $Petal.Length
#> [1] 3.758
#> 
#> $Petal.Width
#> [1] 1.199333
#> 
#> $Species
#> [1] NA

status() may be called on a ’miraiCluster` to query the number of connected nodes at any time.

status(cl)
#> $connections
#> [1] 4
#> 
#> $daemons
#> [1] "abstract://4fc130b92777dbce706aaaa8"
stop_cluster(cl)

Making a cluster specifying ‘url’ without ‘remote’ causes the shell commands for manual deployment of nodes to be printed to the console.

cl <- make_cluster(n = 2, url = host_url())
#> Shell commands for deployment on nodes:
#> 
#> [1]
#> Rscript -e 'mirai::daemon("tcp://hostname:38547",rs=c(10407,987529368,-709709383,-455625178,-350041489,-644694556,1812636565))'
#> 
#> [2]
#> Rscript -e 'mirai::daemon("tcp://hostname:38547",rs=c(10407,2025237564,31519412,1895592412,1818446374,-452272375,1687922752))'
stop_cluster(cl)

Foreach Integration

A ‘miraiCluster’ may also be registered by doParallel for use with the foreach package.

Running some parallel examples for the foreach() function:

library(foreach)
library(iterators)

cl <- make_cluster(4)
doParallel::registerDoParallel(cl)

# normalize the rows of a matrix
m <- matrix(rnorm(9), 3, 3)
foreach(i = 1:nrow(m), .combine = rbind) %dopar%
  (m[i, ] / mean(m[i, ]))
#>               [,1]       [,2]      [,3]
#> result.1 0.5860066  1.0688031 1.3451903
#> result.2 0.6856291 -0.1415699 2.4559407
#> result.3 0.8224936  1.6700118 0.5074946
# simple parallel matrix multiply
a <- matrix(1:16, 4, 4)
b <- t(a)
foreach(b = iter(b, by='col'), .combine = cbind) %dopar%
  (a %*% b)
#>      [,1] [,2] [,3] [,4]
#> [1,]  276  304  332  360
#> [2,]  304  336  368  400
#> [3,]  332  368  404  440
#> [4,]  360  400  440  480

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.