The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

minerva

R package for Maximal Information-Based Nonparametric Exploration computation

Install

install.packages("minerva")
devtools::install_github('filosi/minerva')

Usage

library(minerva)

x <- 0:200 / 200
y <- sin(10 * pi * x) + x
mine(x,y, n.cores=1)
x <- 0:200 / 200
y <- sin(10 * pi * x) + x
mine_stat(x, y, measure="mic")
x <- 0:200 / 200
y <- sin(10 * pi * x) + x

r2 <- cor(x, y)
mm <- mine_stat(x, y, measure="mic")
mm - r2**2

## mine(x, y, n.cores=1)[[5]]

Compute statistic on matrices

x <- matrix(rnorm(1000), ncol=10, nrow=10)
y <- as.matrix(rnorm(1000), ncol=10, nrow=20)

## Compare feature of the same matrix
pstats(x)

## Compare features of matrix x with feature in matrix y
cstats(x, y)

Mictools pipeline

This is inspired to the original implementation by Albanese et al. available in python here: https://github.com/minepy/mictools.

Reading the data from mictool repository

datasaurus <- read.table("https://raw.githubusercontent.com/minepy/mictools/master/examples/datasaurus.txt", 
header=TRUE, row.names=1, as.is=TRUE, stringsAsFactors=FALSE)
datasaurus.m <- t(datasaurus)

Compute null distribution for tic_e

Automatically compute:

ticnull <- mictools(datasaurus.m, nperm=10000, seed=1234)

## Get the names of the named list
names(ticnull)
##[1]  "tic"      "nulldist" "obstic"   "obsdist"  "pval"
Null Distribution
ticnull$nulldist
BinStart BinEnd NullCount NullCumSum
0e+00 1e-04 0 1e+05
1e-04 2e-04 0 1e+05
2e-04 3e-04 0 1e+05
3e-04 4e-04 0 1e+05
4e-04 5e-04 0 1e+05
5e-04 6e-04 0 1e+05
…. ….
Observed distribution
ticnull$obsdist
BinStart BinEnd Count CountCum
0e+00 1e-04 0 325
1e-04 2e-04 0 325
2e-04 3e-04 0 325
3e-04 4e-04 0 325
4e-04 5e-04 0 325
5e-04 6e-04 0 325
…. ….

Plot tic_e and pvalue distribution.

hist(ticnull$tic)

hist(ticenull$pval, breaks=50, freq=FALSE)

Use p.adjust.method to use a different pvalue correction method, or use the qvalue package to use Storey’s qvalue.

## Correct pvalues using qvalue
qobj <- qvalue(ticnull$pval$pval)

## Add column in the pval data.frame
ticnull$pval$qvalue <- qobj$qvalue
ticnull$pval

Same table as above with the qvalue column added at the end.

pval I1 I2 Var1 Var2 adj.P.Val qvalue
0.5202 1 2 away_x bullseye_x 0.95 1
0.9533 1 3 away_x circle_x 0.99 1
0.0442 1 4 away_x dino_x 0.52 0
0.6219 1 5 away_x dots_x 0.95 1
0.8922 1 6 away_x h_lines_x 0.98 1
0.3972 1 7 away_x high_lines_x 0.91 1
….

Strenght of the association (MIC)

## Use columns of indexes and FDR adjusted pvalue 
micres <- mic_strength(datasaurus.m, ticnull$pval, pval.col=c(6, 2, 3))
TicePval MIC I1 I2
0.0457 0.42 2 15
0.0000 0.63 3 16
0.0196 0.50 5 18
0.0162 0.36 9 22
0.0000 0.63 10 23
0.0000 0.57 13 26

Association strength computed based on the qvalue adjusted pvalue

## Use qvalue adjusted pvalue 
micresq <- mic_strength(datasaurus.m, ticnull$pval, pval.col=c("qvalue", "Var1", "Var2"))
TicePval MIC I1 I2
0.0401 0.42 bullseye_x bullseye_y
0.0000 0.63 circle_x circle_y
0.0172 0.50 dots_x dots_y
0.0143 0.36 slant_up_x slant_up_y
0.0000 0.63 star_x star_y
0.0000 0.57 x_shape_x x_shape_y

Citing minepy/minerva and mictools

minepy2013 Davide Albanese, Michele Filosi, Roberto Visintainer, Samantha Riccadonna, Giuseppe Jurman and Cesare Furlanello. minerva and minepy:a C engine for the MINE suite and its R, Python and MATLAB wrappers. Bioinformatics (2013) 29(3): 407-408 first published online December 14, 2012
mictools2018 Davide Albanese, Samantha Riccadonna, Claudio Donati, Pietro Franceschi. A practical tool for maximal information coefficient analysis. GigaScience (2018)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.