The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
NMoE (Normal Mixtures-of-Experts) provides a flexible modelling framework for heterogenous data with Gaussian distributions. NMoE consists of a mixture of K Normal expert regressors network (of degree p) gated by a softmax gating network (of degree q) and is represented by:
alpha
’s of the softmax net.beta
’s and variances sigma2
’s.It was written in R Markdown, using the knitr package for production.
See help(package="meteorits")
for further details and references provided by citation("meteorits")
.
n <- 500 # Size of the sample
alphak <- matrix(c(0, 8), ncol = 1) # Parameters of the gating network
betak <- matrix(c(0, -2.5, 0, 2.5), ncol = 2) # Regression coefficients of the experts
sigmak <- c(1, 1) # Standard deviations of the experts
x <- seq.int(from = -1, to = 1, length.out = n) # Inputs (predictors)
# Generate sample of size n
sample <- sampleUnivNMoE(alphak = alphak, betak = betak, sigmak = sigmak, x = x)
y <- sample$y
nmoe <- emNMoE(X = x, Y = y, K, p, q, n_tries, max_iter,
threshold, verbose, verbose_IRLS)
## EM NMoE: Iteration: 1 | log-likelihood: -841.382104469357
## EM NMoE: Iteration: 2 | log-likelihood: -841.232822861522
## EM NMoE: Iteration: 3 | log-likelihood: -840.961897977121
## EM NMoE: Iteration: 4 | log-likelihood: -840.328493820929
## EM NMoE: Iteration: 5 | log-likelihood: -838.805868340979
## EM NMoE: Iteration: 6 | log-likelihood: -835.284322144359
## EM NMoE: Iteration: 7 | log-likelihood: -827.81480465452
## EM NMoE: Iteration: 8 | log-likelihood: -814.053515931741
## EM NMoE: Iteration: 9 | log-likelihood: -793.354676108963
## EM NMoE: Iteration: 10 | log-likelihood: -769.747643371433
## EM NMoE: Iteration: 11 | log-likelihood: -750.801287680501
## EM NMoE: Iteration: 12 | log-likelihood: -740.110229279826
## EM NMoE: Iteration: 13 | log-likelihood: -735.105474317739
## EM NMoE: Iteration: 14 | log-likelihood: -732.631433195022
## EM NMoE: Iteration: 15 | log-likelihood: -731.225497976821
## EM NMoE: Iteration: 16 | log-likelihood: -730.327369034398
## EM NMoE: Iteration: 17 | log-likelihood: -729.70461805428
## EM NMoE: Iteration: 18 | log-likelihood: -729.251408045268
## EM NMoE: Iteration: 19 | log-likelihood: -728.91300801255
## EM NMoE: Iteration: 20 | log-likelihood: -728.656099114937
## EM NMoE: Iteration: 21 | log-likelihood: -728.457965274363
## EM NMoE: Iteration: 22 | log-likelihood: -728.302505169266
## EM NMoE: Iteration: 23 | log-likelihood: -728.17827167698
## EM NMoE: Iteration: 24 | log-likelihood: -728.077143731534
## EM NMoE: Iteration: 25 | log-likelihood: -727.993340557231
## EM NMoE: Iteration: 26 | log-likelihood: -727.922708059608
## EM NMoE: Iteration: 27 | log-likelihood: -727.862220571622
## EM NMoE: Iteration: 28 | log-likelihood: -727.80964020916
## EM NMoE: Iteration: 29 | log-likelihood: -727.763285356876
## EM NMoE: Iteration: 30 | log-likelihood: -727.72187264597
## EM NMoE: Iteration: 31 | log-likelihood: -727.684408007886
## EM NMoE: Iteration: 32 | log-likelihood: -727.650110610075
## EM NMoE: Iteration: 33 | log-likelihood: -727.618359453292
## EM NMoE: Iteration: 34 | log-likelihood: -727.588653524551
## EM NMoE: Iteration: 35 | log-likelihood: -727.560585266958
## EM NMoE: Iteration: 36 | log-likelihood: -727.533819663819
## EM NMoE: Iteration: 37 | log-likelihood: -727.508079238599
## EM NMoE: Iteration: 38 | log-likelihood: -727.483132999833
## EM NMoE: Iteration: 39 | log-likelihood: -727.458788309494
## EM NMoE: Iteration: 40 | log-likelihood: -727.434884943844
## EM NMoE: Iteration: 41 | log-likelihood: -727.411290809236
## EM NMoE: Iteration: 42 | log-likelihood: -727.387898902839
## EM NMoE: Iteration: 43 | log-likelihood: -727.364625190746
## EM NMoE: Iteration: 44 | log-likelihood: -727.341407128219
## EM NMoE: Iteration: 45 | log-likelihood: -727.318202580231
## EM NMoE: Iteration: 46 | log-likelihood: -727.294988924302
## EM NMoE: Iteration: 47 | log-likelihood: -727.271762139712
## EM NMoE: Iteration: 48 | log-likelihood: -727.248535713999
## EM NMoE: Iteration: 49 | log-likelihood: -727.225339233752
## EM NMoE: Iteration: 50 | log-likelihood: -727.202216573926
## EM NMoE: Iteration: 51 | log-likelihood: -727.179223656928
## EM NMoE: Iteration: 52 | log-likelihood: -727.156425451874
## EM NMoE: Iteration: 53 | log-likelihood: -727.133894125782
## EM NMoE: Iteration: 54 | log-likelihood: -727.111704849592
## EM NMoE: Iteration: 55 | log-likelihood: -727.089933066924
## EM NMoE: Iteration: 56 | log-likelihood: -727.0686515925
## EM NMoE: Iteration: 57 | log-likelihood: -727.047928065085
## EM NMoE: Iteration: 58 | log-likelihood: -727.027822881704
## EM NMoE: Iteration: 59 | log-likelihood: -727.008387991342
## EM NMoE: Iteration: 60 | log-likelihood: -726.989665033376
## EM NMoE: Iteration: 61 | log-likelihood: -726.971685930922
## EM NMoE: Iteration: 62 | log-likelihood: -726.954472676238
## EM NMoE: Iteration: 63 | log-likelihood: -726.938037841439
## EM NMoE: Iteration: 64 | log-likelihood: -726.92238538057
## EM NMoE: Iteration: 65 | log-likelihood: -726.907511620225
## EM NMoE: Iteration: 66 | log-likelihood: -726.893406346164
## EM NMoE: Iteration: 67 | log-likelihood: -726.880053909298
## EM NMoE: Iteration: 68 | log-likelihood: -726.867434292648
## EM NMoE: Iteration: 69 | log-likelihood: -726.855524098823
## EM NMoE: Iteration: 70 | log-likelihood: -726.844297433495
## EM NMoE: Iteration: 71 | log-likelihood: -726.833726673385
## EM NMoE: Iteration: 72 | log-likelihood: -726.823783117087
## EM NMoE: Iteration: 73 | log-likelihood: -726.814437523958
## EM NMoE: Iteration: 74 | log-likelihood: -726.805660550544
## EM NMoE: Iteration: 75 | log-likelihood: -726.797423096332
## EM NMoE: Iteration: 76 | log-likelihood: -726.789696571368
## EM NMoE: Iteration: 77 | log-likelihood: -726.78245309806
nmoe$summary()
## ------------------------------------------
## Fitted Normal Mixture-of-Experts model
## ------------------------------------------
##
## NMoE model with K = 2 experts:
##
## log-likelihood df AIC BIC ICL
## -726.7825 8 -734.7825 -751.6409 -774.2446
##
## Clustering table (Number of observations in each expert):
##
## 1 2
## 281 219
##
## Regression coefficients:
##
## Beta(k = 1) Beta(k = 2)
## 1 0.07962311 0.3293571
## X^1 -2.34468274 2.9456271
##
## Variances:
##
## Sigma2(k = 1) Sigma2(k = 2)
## 1.065111 1.057344
nmoe <- emNMoE(X = x, Y = y, K, p, q, n_tries, max_iter,
threshold, verbose, verbose_IRLS)
## EM NMoE: Iteration: 1 | log-likelihood: 48.3135498211327
## EM NMoE: Iteration: 2 | log-likelihood: 48.7021394575936
## EM NMoE: Iteration: 3 | log-likelihood: 49.1773653245368
## EM NMoE: Iteration: 4 | log-likelihood: 50.3595103831193
## EM NMoE: Iteration: 5 | log-likelihood: 53.3225276945388
## EM NMoE: Iteration: 6 | log-likelihood: 59.2059736964644
## EM NMoE: Iteration: 7 | log-likelihood: 66.5084561908942
## EM NMoE: Iteration: 8 | log-likelihood: 71.6698294742357
## EM NMoE: Iteration: 9 | log-likelihood: 74.450447584389
## EM NMoE: Iteration: 10 | log-likelihood: 76.2965362459835
## EM NMoE: Iteration: 11 | log-likelihood: 78.0652973676674
## EM NMoE: Iteration: 12 | log-likelihood: 80.1011870778738
## EM NMoE: Iteration: 13 | log-likelihood: 82.7086208649667
## EM NMoE: Iteration: 14 | log-likelihood: 86.3168780134924
## EM NMoE: Iteration: 15 | log-likelihood: 90.9036306741408
## EM NMoE: Iteration: 16 | log-likelihood: 94.438419556814
## EM NMoE: Iteration: 17 | log-likelihood: 95.7833599069938
## EM NMoE: Iteration: 18 | log-likelihood: 96.2275872383811
## EM NMoE: Iteration: 19 | log-likelihood: 96.414530924196
## EM NMoE: Iteration: 20 | log-likelihood: 96.5274452761453
## EM NMoE: Iteration: 21 | log-likelihood: 96.6211691466595
## EM NMoE: Iteration: 22 | log-likelihood: 96.7139572600177
## EM NMoE: Iteration: 23 | log-likelihood: 96.8124961429116
## EM NMoE: Iteration: 24 | log-likelihood: 96.9190778749052
## EM NMoE: Iteration: 25 | log-likelihood: 97.0337223799033
## EM NMoE: Iteration: 26 | log-likelihood: 97.1548714540442
## EM NMoE: Iteration: 27 | log-likelihood: 97.2798101999998
## EM NMoE: Iteration: 28 | log-likelihood: 97.4052037031475
## EM NMoE: Iteration: 29 | log-likelihood: 97.5278434072014
## EM NMoE: Iteration: 30 | log-likelihood: 97.645464421148
## EM NMoE: Iteration: 31 | log-likelihood: 97.7574153181095
## EM NMoE: Iteration: 32 | log-likelihood: 97.8649317789619
## EM NMoE: Iteration: 33 | log-likelihood: 97.9708810941274
## EM NMoE: Iteration: 34 | log-likelihood: 98.079015703324
## EM NMoE: Iteration: 35 | log-likelihood: 98.1929989454507
## EM NMoE: Iteration: 36 | log-likelihood: 98.3155508217666
## EM NMoE: Iteration: 37 | log-likelihood: 98.4480385580903
## EM NMoE: Iteration: 38 | log-likelihood: 98.5906609977787
## EM NMoE: Iteration: 39 | log-likelihood: 98.7431113492518
## EM NMoE: Iteration: 40 | log-likelihood: 98.9053222779114
## EM NMoE: Iteration: 41 | log-likelihood: 99.0780646772237
## EM NMoE: Iteration: 42 | log-likelihood: 99.2632556955678
## EM NMoE: Iteration: 43 | log-likelihood: 99.4641640564058
## EM NMoE: Iteration: 44 | log-likelihood: 99.685779862926
## EM NMoE: Iteration: 45 | log-likelihood: 99.935591947143
## EM NMoE: Iteration: 46 | log-likelihood: 100.224916392958
## EM NMoE: Iteration: 47 | log-likelihood: 100.570636347252
## EM NMoE: Iteration: 48 | log-likelihood: 100.995459308499
## EM NMoE: Iteration: 49 | log-likelihood: 101.515795348348
## EM NMoE: Iteration: 50 | log-likelihood: 102.082569523463
## EM NMoE: Iteration: 51 | log-likelihood: 102.537226050965
## EM NMoE: Iteration: 52 | log-likelihood: 102.688703507615
## EM NMoE: Iteration: 53 | log-likelihood: 102.719133334263
## EM NMoE: Iteration: 54 | log-likelihood: 102.721229161696
## EM NMoE: Iteration: 55 | log-likelihood: 102.72187714441
nmoe$summary()
## ------------------------------------------
## Fitted Normal Mixture-of-Experts model
## ------------------------------------------
##
## NMoE model with K = 2 experts:
##
## log-likelihood df AIC BIC ICL
## 102.7219 8 94.72188 83.07126 83.17734
##
## Clustering table (Number of observations in each expert):
##
## 1 2
## 84 52
##
## Regression coefficients:
##
## Beta(k = 1) Beta(k = 2)
## 1 -12.667293919 -42.36199675
## X^1 0.006474808 0.02149263
##
## Variances:
##
## Sigma2(k = 1) Sigma2(k = 2)
## 0.01352346 0.0119311
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.