The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

metan: Multi Environment Trials Analysis

Performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.

Version: 1.19.0
Depends: R (≥ 4.1.0)
Imports: dplyr (≥ 1.0.0), GGally, ggforce, ggplot2 (≥ 3.3.0), ggrepel, lme4, lmerTest, magrittr, mathjaxr, methods, patchwork, purrr, rlang (≥ 0.4.11), tibble, tidyr, tidyselect (≥ 1.0.0)
Suggests: DT, knitr, rmarkdown, roxygen2, rstudioapi
Published: 2024-12-15
DOI: 10.32614/CRAN.package.metan
Author: Tiago Olivoto ORCID iD [aut, cre, cph]
Maintainer: Tiago Olivoto <tiagoolivoto at gmail.com>
BugReports: https://github.com/nepem-ufsc/metan/issues
License: GPL-3
URL: https://github.com/nepem-ufsc/metan, https://nepem-ufsc.github.io/metan/
NeedsCompilation: no
Language: en-US
Citation: metan citation info
Materials: NEWS
In views: Agriculture
CRAN checks: metan results

Documentation:

Reference manual: metan.pdf
Vignettes: Multi-environment Trial Analysis (source, R code)

Downloads:

Package source: metan_1.19.0.tar.gz
Windows binaries: r-devel: metan_1.19.0.zip, r-release: metan_1.19.0.zip, r-oldrel: metan_1.19.0.zip
macOS binaries: r-release (arm64): metan_1.19.0.tgz, r-oldrel (arm64): metan_1.19.0.tgz, r-release (x86_64): metan_1.19.0.tgz, r-oldrel (x86_64): metan_1.19.0.tgz
Old sources: metan archive

Reverse dependencies:

Reverse imports: CropBreeding, Path.Analysis
Reverse suggests: rYWAASB

Linking:

Please use the canonical form https://CRAN.R-project.org/package=metan to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.