The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Disposition Table

library(metalite.sl)
library(metalite)
library(dplyr)

Create Disposition Table

The objective of this tutorial is to generate a production-ready Disposition table specification analyses.

This report produces a table that contains counts and percentage of disposition for the participants in population for overall study. To accomplish this using metalite.sl, four essential functions are required:

An example output:

Example data

Within metalite.sl, we utilized the ADSL datasets from the metalite package to create an illustrative dataset. The metadata structure remains consistent across all analysis examples within metalite.sl. Additional information can be accessed on the metalite package website.

Build a metadata

adsl <- r2rtf::r2rtf_adsl
adsl$TRTA <- adsl$TRT01A
adsl$TRTA <- factor(adsl$TRTA,
  levels = c("Placebo", "Xanomeline Low Dose", "Xanomeline High Dose"),
  labels = c("Placebo", "Low Dose", "High Dose")
)

# Create a variable EOSSTT indicating the end of end of study status
adsl$EOSSTT <- sample(
  x = c("Participants Ongoing", "Discontinued"),
  size = length(adsl$USUBJID),
  prob = c(0.8, 0.2), replace = TRUE
)
adsl[adsl[["EOSSTT"]] == "Discontinued", "DCSREAS"] <- sample(
  x = c("Adverse Event", "I/E Not Met", "Withdrew Consent", "Lack of Efficacy"),
  size = length(adsl[adsl[["EOSSTT"]] == "Discontinued", "USUBJID"]),
  prob = c(0.7, 0.1, 0.1, 0.1), replace = TRUE
)

# Create a variable EOTSTT1 indicating the end of treatment status part 1
adsl$EOTSTT1 <- ifelse(adsl$DISCONFL == "Y", "Discontinued", "Completed")
adsl$DCTREAS <- ifelse(adsl$EOTSTT1 == "Discontinued", adsl$DCREASCD, NA)
head(adsl)
#>        STUDYID     USUBJID SUBJID SITEID SITEGR1                  ARM
#> 1 CDISCPILOT01 01-701-1015   1015    701     701              Placebo
#> 2 CDISCPILOT01 01-701-1023   1023    701     701              Placebo
#> 3 CDISCPILOT01 01-701-1028   1028    701     701 Xanomeline High Dose
#> 4 CDISCPILOT01 01-701-1033   1033    701     701  Xanomeline Low Dose
#> 5 CDISCPILOT01 01-701-1034   1034    701     701 Xanomeline High Dose
#> 6 CDISCPILOT01 01-701-1047   1047    701     701              Placebo
#>                 TRT01P TRT01PN               TRT01A TRT01AN     TRTSDT
#> 1              Placebo       0              Placebo       0 2014-01-02
#> 2              Placebo       0              Placebo       0 2012-08-05
#> 3 Xanomeline High Dose      81 Xanomeline High Dose      81 2013-07-19
#> 4  Xanomeline Low Dose      54  Xanomeline Low Dose      54 2014-03-18
#> 5 Xanomeline High Dose      81 Xanomeline High Dose      81 2014-07-01
#> 6              Placebo       0              Placebo       0 2013-02-12
#>       TRTEDT TRTDUR AVGDD CUMDOSE AGE AGEGR1 AGEGR1N  AGEU  RACE RACEN SEX
#> 1 2014-07-02    182   0.0       0  63    <65       1 YEARS WHITE     1   F
#> 2 2012-09-01     28   0.0       0  64    <65       1 YEARS WHITE     1   M
#> 3 2014-01-14    180  77.7   13986  71  65-80       2 YEARS WHITE     1   M
#> 4 2014-03-31     14  54.0     756  74  65-80       2 YEARS WHITE     1   M
#> 5 2014-12-30    183  76.9   14067  77  65-80       2 YEARS WHITE     1   F
#> 6 2013-03-09     26   0.0       0  85    >80       3 YEARS WHITE     1   F
#>                   ETHNIC SAFFL ITTFL EFFFL COMP8FL COMP16FL COMP24FL DISCONFL
#> 1     HISPANIC OR LATINO     Y     Y     Y       Y        Y        Y         
#> 2     HISPANIC OR LATINO     Y     Y     Y       N        N        N        Y
#> 3 NOT HISPANIC OR LATINO     Y     Y     Y       Y        Y        Y         
#> 4 NOT HISPANIC OR LATINO     Y     Y     Y       N        N        N        Y
#> 5 NOT HISPANIC OR LATINO     Y     Y     Y       Y        Y        Y         
#> 6 NOT HISPANIC OR LATINO     Y     Y     Y       N        N        N        Y
#>   DSRAEFL DTHFL BMIBL BMIBLGR1 HEIGHTBL WEIGHTBL EDUCLVL   DISONSDT DURDIS
#> 1                25.1   25-<30    147.3     54.4      16 2010-04-30   43.9
#> 2       Y        30.4     >=30    162.6     80.3      14 2006-03-11   76.4
#> 3                31.4     >=30    177.8     99.3      16 2009-12-16   42.8
#> 4                28.8   25-<30    175.3     88.5      12 2009-08-02   55.3
#> 5                26.1   25-<30    154.9     62.6       9 2011-09-29   32.9
#> 6       Y        30.4     >=30    148.6     67.1       8 2009-07-26   42.0
#>   DURDSGR1   VISIT1DT    RFSTDTC    RFENDTC VISNUMEN     RFENDT
#> 1     >=12 2013-12-26 2014-01-02 2014-07-02       12 2014-07-02
#> 2     >=12 2012-07-22 2012-08-05 2012-09-02        5 2012-09-02
#> 3     >=12 2013-07-11 2013-07-19 2014-01-14       12 2014-01-14
#> 4     >=12 2014-03-10 2014-03-18 2014-04-14        5 2014-04-14
#> 5     >=12 2014-06-24 2014-07-01 2014-12-30       12 2014-12-30
#> 6     >=12 2013-01-22 2013-02-12 2013-03-29        6 2013-03-29
#>                       DCDECOD         DCREASCD MMSETOT      TRTA
#> 1                   COMPLETED        Completed      23   Placebo
#> 2               ADVERSE EVENT    Adverse Event      23   Placebo
#> 3                   COMPLETED        Completed      23 High Dose
#> 4 STUDY TERMINATED BY SPONSOR Sponsor Decision      23  Low Dose
#> 5                   COMPLETED        Completed      21 High Dose
#> 6               ADVERSE EVENT    Adverse Event      23   Placebo
#>                 EOSSTT       DCSREAS      EOTSTT1          DCTREAS
#> 1 Participants Ongoing          <NA>    Completed             <NA>
#> 2 Participants Ongoing          <NA> Discontinued    Adverse Event
#> 3         Discontinued Adverse Event    Completed             <NA>
#> 4         Discontinued Adverse Event Discontinued Sponsor Decision
#> 5 Participants Ongoing          <NA>    Completed             <NA>
#> 6 Participants Ongoing          <NA> Discontinued    Adverse Event
plan <- plan(
  analysis = "disp", population = "apat",
  observation = "apat", parameter = "disposition;medical-disposition"
)
meta <- meta_adam(
  population = adsl,
  observation = adsl
) |>
  define_plan(plan = plan) |>
  define_population(
    name = "apat",
    group = "TRTA",
    subset = quote(SAFFL == "Y")
  ) |>
  define_parameter(
    name = "disposition",
    var = "EOSSTT",
    label = "Trial Disposition",
    var_lower = "DCSREAS"
  ) |>
  define_parameter(
    name = "medical-disposition",
    var = "EOTSTT1",
    label = "Participant Study Medication Disposition",
    var_lower = "DCTREAS"
  ) |>
  define_analysis(
    name = "disp",
    title = "Disposition of Participant",
    label = "disposition table"
  ) |>
  meta_build()
Click to show the output
meta
#> ADaM metadata: 
#>    .$data_population     Population data with 254 subjects 
#>    .$data_observation    Observation data with 254 records 
#>    .$plan    Analysis plan with 1 plans 
#> 
#> 
#>   Analysis population type:
#>     name        id  group var       subset                         label
#> 1 'apat' 'USUBJID' 'TRTA'     SAFFL == 'Y' 'All Participants as Treated'
#> 
#> 
#>   Analysis observation type:
#>     name        id  group var subset                         label
#> 1 'apat' 'USUBJID' 'TRTA'            'All Participants as Treated'
#> 
#> 
#>   Analysis parameter type:
#>                    name                                      label subset
#> 1         'disposition'                        'Trial Disposition'       
#> 2 'medical-disposition' 'Participant Study Medication Disposition'       
#> 
#> 
#>   Analysis function:
#>     name               label
#> 1 'disp' 'disposition table'

Analysis preparation

The function prepare_disposition() is written to prepare data for subject disposition analysis.The function takes four arguments:

Meta is metadata object created by metalite and it contains data from ADSL. Analysis, Population, and Parameter arguments are used to subset and process the meta data. They have default values, which rely on the meta data object.

The function assign default value Analysis to prepare_disposition, Population to the population value associated with the prepare_disposition analysis in meta plan, and parameter to the parameter(s) associated with the prepare_disposition analysis in meta$plan.

However, the user can also manually specify the analysis, population, and parameter values when calling the function, if they want to override the default values.

In the body of the function, it calls another function prepare_sl_summary with the same meta, analysis, population, and parameter arguments. prepare_sl_summary takes the meta data, subsets it based on the analysis, population, and parameter values, and then calculates and returns a summary of the relevant data.

The result of prepare_sl_summary is then returned as the result of prepare_disposition.

The resulting output of the function prepare_disposition() comprises a collection of raw datasets for analysis and reporting.

outdata <- prepare_disposition(meta)
Click to show the output
outdata
#> List of 14
#>  $ meta           :List of 7
#>  $ population     : chr "apat"
#>  $ observation    : chr "apat"
#>  $ parameter      : chr "disposition;medical-disposition"
#>  $ n              :'data.frame': 1 obs. of  6 variables:
#>  $ order          : NULL
#>  $ group          : chr "TRTA"
#>  $ reference_group: NULL
#>  $ char_n         :List of 2
#>  $ char_var       : chr [1:2] "EOSSTT" "EOTSTT1"
#>  $ char_prop      :List of 2
#>  $ var_type       :List of 2
#>  $ group_label    : Factor w/ 3 levels "Placebo","Low Dose",..: 1 3 2
#>  $ analysis       : chr "disp"
  • parameter: parameter name
outdata$parameter
#> [1] "disposition;medical-disposition"
  • n: number of participants in population
outdata$n
#>                         name n_1 n_2 n_3 n_9999 var_label
#> 1 Participants in population  86  84  84    254     -----

The resulting dataset contains frequently used statistics, with variables indexed according to the order specified in outdata$group.

outdata$group
#> [1] "TRTA"
  • char_n: number of participants completed vs not completed in each parameter
outdata$char_n
#> [[1]]
#>                   name Placebo Low Dose High Dose Total         var_label
#> 1         Discontinued      14       24        18    56 Trial Disposition
#> 2        Adverse Event      10       15        15    40 Trial Disposition
#> 3          I/E Not Met       0        2         1     3 Trial Disposition
#> 4     Lack of Efficacy       3        5         1     9 Trial Disposition
#> 5     Withdrew Consent       1        2         1     4 Trial Disposition
#> 6 Participants Ongoing      72       60        66   198 Trial Disposition
#> 
#> [[2]]
#>                      name Placebo Low Dose High Dose Total
#> 1               Completed      58       25        27   110
#> 2            Discontinued      28       59        57   144
#> 3           Adverse Event       8       44        40    92
#> 4                   Death       2        1         0     3
#> 5             I/E Not Met       1        0         2     3
#> 6        Lack of Efficacy       3        0         1     4
#> 7       Lost to Follow-up       1        1         0     2
#> 8      Physician Decision       1        0         2     3
#> 9      Protocol Violation       1        1         1     3
#> 10       Sponsor Decision       2        2         3     7
#> 11       Withdrew Consent       9       10         8    27
#>                                   var_label
#> 1  Participant Study Medication Disposition
#> 2  Participant Study Medication Disposition
#> 3  Participant Study Medication Disposition
#> 4  Participant Study Medication Disposition
#> 5  Participant Study Medication Disposition
#> 6  Participant Study Medication Disposition
#> 7  Participant Study Medication Disposition
#> 8  Participant Study Medication Disposition
#> 9  Participant Study Medication Disposition
#> 10 Participant Study Medication Disposition
#> 11 Participant Study Medication Disposition
  • char_var : name of parameter
outdata$char_var
#> [1] "EOSSTT"  "EOTSTT1"
  • char_prop : proportion of subject with disposition
outdata$char_prop
#> [[1]]
#>                   name          Placebo         Low Dose        High Dose
#> 1         Discontinued         16.27907         28.57143         21.42857
#> 2        Adverse Event 11.6279069767442 17.8571428571429 17.8571428571429
#> 3          I/E Not Met                0 2.38095238095238 1.19047619047619
#> 4     Lack of Efficacy 3.48837209302326 5.95238095238095 1.19047619047619
#> 5     Withdrew Consent 1.16279069767442 2.38095238095238 1.19047619047619
#> 6 Participants Ongoing         83.72093         71.42857         78.57143
#>              Total         var_label
#> 1         22.04724 Trial Disposition
#> 2  15.748031496063 Trial Disposition
#> 3 1.18110236220472 Trial Disposition
#> 4 3.54330708661417 Trial Disposition
#> 5  1.5748031496063 Trial Disposition
#> 6         77.95276 Trial Disposition
#> 
#> [[2]]
#>                      name          Placebo         Low Dose        High Dose
#> 1               Completed         67.44186          29.7619         32.14286
#> 2            Discontinued         32.55814          70.2381         67.85714
#> 3           Adverse Event 9.30232558139535 52.3809523809524 47.6190476190476
#> 4                   Death 2.32558139534884 1.19047619047619                0
#> 5             I/E Not Met 1.16279069767442                0 2.38095238095238
#> 6        Lack of Efficacy 3.48837209302326                0 1.19047619047619
#> 7       Lost to Follow-up 1.16279069767442 1.19047619047619                0
#> 8      Physician Decision 1.16279069767442                0 2.38095238095238
#> 9      Protocol Violation 1.16279069767442 1.19047619047619 1.19047619047619
#> 10       Sponsor Decision 2.32558139534884 2.38095238095238 3.57142857142857
#> 11       Withdrew Consent 10.4651162790698 11.9047619047619 9.52380952380952
#>               Total                                var_label
#> 1          43.30709 Participant Study Medication Disposition
#> 2          56.69291 Participant Study Medication Disposition
#> 3  36.2204724409449 Participant Study Medication Disposition
#> 4  1.18110236220472 Participant Study Medication Disposition
#> 5  1.18110236220472 Participant Study Medication Disposition
#> 6   1.5748031496063 Participant Study Medication Disposition
#> 7  0.78740157480315 Participant Study Medication Disposition
#> 8  1.18110236220472 Participant Study Medication Disposition
#> 9  1.18110236220472 Participant Study Medication Disposition
#> 10 2.75590551181102 Participant Study Medication Disposition
#> 11 10.6299212598425 Participant Study Medication Disposition

Format output

Once the raw analysis results are obtained, the format_disposition() function can be employed to prepare the outdata,ensuring its compatibility with production-ready RTF tables.

outdata <- outdata |> format_disposition()
Click to show the output
outdata$tbl
#>                          name n_1    p_1 n_2    p_2 n_3    p_3 n_9999 p_9999
#> 1  Participants in population  86   <NA>  84   <NA>  84   <NA>    254   <NA>
#> 2                Discontinued  14 (16.3)  24 (28.6)  18 (21.4)     56 (22.0)
#> 3               Adverse Event  10 (11.6)  15 (17.9)  15 (17.9)     40 (15.7)
#> 4                 I/E Not Met   0  (0.0)   2  (2.4)   1  (1.2)      3  (1.2)
#> 5            Lack of Efficacy   3  (3.5)   5  (6.0)   1  (1.2)      9  (3.5)
#> 6            Withdrew Consent   1  (1.2)   2  (2.4)   1  (1.2)      4  (1.6)
#> 7        Participants Ongoing  72 (83.7)  60 (71.4)  66 (78.6)    198 (78.0)
#> 8                   Completed  58 (67.4)  25 (29.8)  27 (32.1)    110 (43.3)
#> 9                Discontinued  28 (32.6)  59 (70.2)  57 (67.9)    144 (56.7)
#> 10              Adverse Event   8  (9.3)  44 (52.4)  40 (47.6)     92 (36.2)
#> 11                      Death   2  (2.3)   1  (1.2)   0  (0.0)      3  (1.2)
#> 12                I/E Not Met   1  (1.2)   0  (0.0)   2  (2.4)      3  (1.2)
#> 13           Lack of Efficacy   3  (3.5)   0  (0.0)   1  (1.2)      4  (1.6)
#> 14          Lost to Follow-up   1  (1.2)   1  (1.2)   0  (0.0)      2  (0.8)
#> 15         Physician Decision   1  (1.2)   0  (0.0)   2  (2.4)      3  (1.2)
#> 16         Protocol Violation   1  (1.2)   1  (1.2)   1  (1.2)      3  (1.2)
#> 17           Sponsor Decision   2  (2.3)   2  (2.4)   3  (3.6)      7  (2.8)
#> 18           Withdrew Consent   9 (10.5)  10 (11.9)   8  (9.5)     27 (10.6)
#>                                   var_label
#> 1                                     -----
#> 2                         Trial Disposition
#> 3                         Trial Disposition
#> 4                         Trial Disposition
#> 5                         Trial Disposition
#> 6                         Trial Disposition
#> 7                         Trial Disposition
#> 8  Participant Study Medication Disposition
#> 9  Participant Study Medication Disposition
#> 10 Participant Study Medication Disposition
#> 11 Participant Study Medication Disposition
#> 12 Participant Study Medication Disposition
#> 13 Participant Study Medication Disposition
#> 14 Participant Study Medication Disposition
#> 15 Participant Study Medication Disposition
#> 16 Participant Study Medication Disposition
#> 17 Participant Study Medication Disposition
#> 18 Participant Study Medication Disposition

RTF tables

The last step is to prepare the RTF table using rtf_trt_compliance.

outdata$tbl <- outdata$tbl %>%
  mutate(name = ifelse(trimws(name) == "Status Not Recorded", "    Status Not Recorded", name))

outdata |>
  rtf_disposition(
    "Source: [CDISCpilot: adam-adsl]",
    path_outdata = tempfile(fileext = ".Rdata"),
    path_outtable = "outtable/disposition.rtf"
  )
#> The outdata is saved in/rtmp/RtmpkBEdeP/file3606c1be370f0.Rdata
#> The output is saved in/rtmp/Rtmp7YMja5/Rbuild3605e43666ac3c/metalite.sl/vignettes/outtable/disposition.rtf

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.