The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The objective of this tutorial is to generate a production-ready AE specification analyses. It extends examples shown in the specific AE chapter of the R for Clinical Study Reports and Submission book.
The AE specification analysis entails the creation of tables that summarize details of different types of adverse events. To accomplish this using metalite.ae, three essential functions are required:
prepare_ae_specific()
: prepare analysis raw
datasets.format_ae_specific()
: prepare analysis (mock) outdata
with proper format.tlf_ae_specific()
: transfer (mock) output dataset to
RTF table.There are three optional functions to extend AE specification analysis.
extend_ae_specific_inference()
: add risk difference
inference results based on M&N method.extend_ae_specific_duration()
: add average duration of
AE.extend_ae_specific_events()
: add average number of AE
events.An example output:
Within metalite.ae, we utilized the ADSL and ADAE datasets from the metalite package to create an illustrative dataset. The metadata structure remains consistent across all analysis examples within metalite.ae. Additional information can be accessed on the metalite package website.
meta
#> ADaM metadata:
#> .$data_population Population data with 254 subjects
#> .$data_observation Observation data with 1191 records
#> .$plan Analysis plan with 18 plans
#>
#>
#> Analysis population type:
#> name id group var subset label
#> 1 'apat' 'USUBJID' 'TRTA' SAFFL == 'Y' 'All Participants as Treated'
#>
#>
#> Analysis observation type:
#> name id group var subset label
#> 1 'wk12' 'USUBJID' 'TRTA' SAFFL == 'Y' 'Weeks 0 to 12'
#> 2 'wk24' 'USUBJID' 'TRTA' AOCC01FL == 'Y' 'Weeks 0 to 24'
#>
#>
#> Analysis parameter type:
#> name label
#> 1 'rel' 'drug-related adverse events'
#> 2 'aeosi' 'adverse events of special interest'
#> 3 'any' 'any adverse events'
#> 4 'ser' 'serious adverse events'
#> subset
#> 1 AEREL %in% c('POSSIBLE', 'PROBABLE')
#> 2 AEOSI == 'Y'
#> 3
#> 4 AESER == 'Y'
#>
#>
#> Analysis function:
#> name label
#> 1 'ae_summary' 'Table: adverse event summary'
#> 2 'ae_listing' 'Listing: adverse event'
#> 3 'ae_exp_adj' 'Exposure Adjusted Incident Rate'
#> 4 'ae_specific' 'Table: specific adverse event'
The function prepare_ae_specific()
is used to create a
dataset for AE summary analysis by utilizing predefined keywords
specified in the example data meta
.
The resulting output of the function is an outdata
object, which comprises a collection of raw datasets for analysis and
reporting.
outdata <- prepare_ae_specific(
meta,
population = "apat",
observation = "wk12",
parameter = "rel"
)
outdata
#> List of 15
#> $ meta :List of 7
#> $ population : chr "apat"
#> $ observation : chr "wk12"
#> $ parameter : chr "rel"
#> $ n :'data.frame': 138 obs. of 4 variables:
#> $ order : num [1:138] 1 100 200 900 1000 ...
#> $ group : chr [1:4] "Placebo" "Low Dose" "High Dose" "Total"
#> $ reference_group: num 1
#> $ prop :'data.frame': 138 obs. of 4 variables:
#> $ diff :'data.frame': 138 obs. of 2 variables:
#> $ n_pop :'data.frame': 1 obs. of 4 variables:
#> $ name : chr [1:138] "Participants in population" "with one or more drug-related adverse events" "with no drug-related adverse events" "" ...
#> $ soc_name : chr [1:138] NA NA NA NA ...
#> $ components : chr [1:2] "soc" "par"
#> $ prepare_call : language prepare_ae_specific(meta = meta, population = "apat", observation = "wk12", parameter = "rel")
The resulting dataset contains frequently used statistics, with
variables indexed according to the order specified in
outdata$group
.
The row is indexed according to the order of
outdata$name
.
head(data.frame(outdata$order, outdata$name))
#> outdata.order outdata.name
#> 1 1 Participants in population
#> 2 100 with one or more drug-related adverse events
#> 3 200 with no drug-related adverse events
#> 4 900
#> 5 1000 Cardiac disorders
#> 6 1021 Atrial fibrillation
n_pop
: number of participants in population.n
: number of subjects with AE.head(outdata$n)
#> n_1 n_2 n_3 n_4
#> 1 86 84 84 254
#> 2 44 73 70 187
#> 3 42 11 14 67
#> 4 NA NA NA NA
#> 122 6 7 4 17
#> 25 1 0 2 3
prop
: proportion of subjects with AE.head(outdata$prop)
#> prop_1 prop_2 prop_3 prop_4
#> 1 NA NA NA NA
#> 2 51.162791 86.904762 83.333333 73.622047
#> 3 48.837209 13.095238 16.666667 26.377953
#> 4 NA NA NA NA
#> 122 6.976744 8.333333 4.761905 6.692913
#> 25 1.162791 0.000000 2.380952 1.181102
diff
: risk difference compared with the
reference_group
.Once the raw analysis results are obtained, the
format_ae_specific()
function can be employed to prepare
the outdata, ensuring its compatibility with production-ready RTF
tables.
tbl <- outdata |> format_ae_specific()
head(tbl$tbl)
#> name n_1 prop_1 n_2 prop_2 n_3
#> 1 Participants in population 86 <NA> 84 <NA> 84
#> 2 with one or more drug-related adverse events 44 (51.2) 73 (86.9) 70
#> 3 with no drug-related adverse events 42 (48.8) 11 (13.1) 14
#> 4 NA <NA> NA <NA> NA
#> 122 Cardiac disorders 6 (7.0) 7 (8.3) 4
#> 25 Atrial fibrillation 1 (1.2) 0 (0.0) 2
#> prop_3 n_4 prop_4
#> 1 <NA> 254 <NA>
#> 2 (83.3) 187 (73.6)
#> 3 (16.7) 67 (26.4)
#> 4 <NA> NA <NA>
#> 122 (4.8) 17 (6.7)
#> 25 (2.4) 3 (1.2)
By using the display
argument, we can choose specific
statistics to include. For instance, we have the option to incorporate
the risk difference.
tbl <- outdata |> format_ae_specific(display = c("n", "prop", "diff"))
head(tbl$tbl)
#> name n_1 prop_1 n_2 prop_2 n_3
#> 1 Participants in population 86 <NA> 84 <NA> 84
#> 2 with one or more drug-related adverse events 44 (51.2) 73 (86.9) 70
#> 3 with no drug-related adverse events 42 (48.8) 11 (13.1) 14
#> 4 NA <NA> NA <NA> NA
#> 122 Cardiac disorders 6 (7.0) 7 (8.3) 4
#> 25 Atrial fibrillation 1 (1.2) 0 (0.0) 2
#> prop_3 diff_2 diff_3
#> 1 <NA> <NA> <NA>
#> 2 (83.3) 35.7 32.2
#> 3 (16.7) -35.7 -32.2
#> 4 <NA> <NA> <NA>
#> 122 (4.8) 1.4 -2.2
#> 25 (2.4) -1.2 1.2
To perform advanced analysis, the
extend_ae_specific_inference()
function is utilized. For
instance, we can incorporate a 95% confidence interval based on the
Miettinen and Nurminen (M&N) method. Further information regarding
the M&N method can be found in the rate
compare vignette.
tbl <- outdata |>
extend_ae_specific_inference() |>
format_ae_specific(display = c("n", "prop", "diff", "diff_ci"))
head(tbl$tbl)
#> name n_1 prop_1 n_2 prop_2 n_3
#> 1 Participants in population 86 <NA> 84 <NA> 84
#> 2 with one or more drug-related adverse events 44 (51.2) 73 (86.9) 70
#> 3 with no drug-related adverse events 42 (48.8) 11 (13.1) 14
#> 4 NA <NA> NA <NA> NA
#> 122 Cardiac disorders 6 (7.0) 7 (8.3) 4
#> 25 Atrial fibrillation 1 (1.2) 0 (0.0) 2
#> prop_3 diff_2 ci_2 diff_3 ci_3
#> 1 <NA> <NA> (-4.4, 0.0) <NA> (-4.4, 0.0)
#> 2 (83.3) 35.7 (22.4, 48.0) 32.2 (18.4, 44.8)
#> 3 (16.7) -35.7 (-48.0, -22.4) -32.2 (-44.8, -18.4)
#> 4 <NA> <NA> <NA> <NA> <NA>
#> 122 (4.8) 1.4 (-7.3, 10.2) -2.2 (-10.3, 5.6)
#> 25 (2.4) -1.2 (-6.3, 3.3) 1.2 (-4.2, 7.3)
We can use extend_ae_specific_duration()
to add average
duration of AE.
tbl <- outdata |>
extend_ae_specific_duration(duration_var = "ADURN") |>
format_ae_specific(display = c("n", "prop", "dur"))
head(tbl$tbl)
#> name n_1 prop_1 dur_1 n_2
#> 1 Participants in population 86 <NA> <NA> 84
#> 2 with one or more drug-related adverse events 44 (51.2) 29.0 ( 3.5) 73
#> 3 with no drug-related adverse events 42 (48.8) <NA> 11
#> 4 NA <NA> <NA> NA
#> 122 Cardiac disorders 6 (7.0) 27.1 ( 5.9) 7
#> 25 Atrial fibrillation 1 (1.2) 6.0 0
#> prop_2 dur_2 n_3 prop_3 dur_3
#> 1 <NA> <NA> 84 <NA> <NA>
#> 2 (86.9) 27.2 ( 3.2) 70 (83.3) 30.6 ( 2.2)
#> 3 (13.1) <NA> 14 (16.7) <NA>
#> 4 <NA> <NA> NA <NA> <NA>
#> 122 (8.3) 16.1 ( 3.5) 4 (4.8) 1.5 ( 0.4)
#> 25 (0.0) <NA> 2 (2.4) 1.7 ( 0.7)
We can use extend_ae_specific_events()
to add number of
AE and/or average of it per subject.
tbl <- outdata |>
extend_ae_specific_events() |>
format_ae_specific(display = c("n", "prop", "events_count", "events_avg"))
head(tbl$tbl)
#> name n_1 prop_1 eventsavg_1
#> 1 Participants in population 86 <NA> <NA>
#> 2 with one or more drug-related adverse events 44 (51.2) 0.7 ( 0.1)
#> 3 with no drug-related adverse events 42 (48.8) <NA>
#> 4 NA <NA> <NA>
#> 122 Cardiac disorders 6 (7.0) 2.3 ( 0.6)
#> 25 Atrial fibrillation 1 (1.2) 1.0
#> eventscount_1 n_2 prop_2 eventsavg_2 eventscount_2 n_3 prop_3 eventsavg_3
#> 1 NA 84 <NA> <NA> NA 84 <NA> <NA>
#> 2 133 73 (86.9) 1.6 ( 0.2) 292 70 (83.3) 1.5 ( 0.2)
#> 3 NA 11 (13.1) <NA> NA 14 (16.7) <NA>
#> 4 NA NA <NA> <NA> NA NA <NA> <NA>
#> 122 14 7 (8.3) 1.9 ( 0.4) 13 4 (4.8) 1.2 ( 0.2)
#> 25 1 0 (0.0) <NA> 0 2 (2.4) 1.5 ( 0.5)
#> eventscount_3
#> 1 NA
#> 2 279
#> 3 NA
#> 4 NA
#> 122 5
#> 25 3
We can use filter_method
and
filter_criteria
parameters to filter information based on
the specified criteria:
filter_method
: A character value to specify how to
filter rows (by count
or percent
).
count
: Filter based on participant count.percent
: Filter based on percent incidence.filter_criteria
: A numeric value to display rows where
at least one therapy group has:
filter_method
is percent
, the value
should be between 0 and 100.filter_method
is count
, the value
should be greater than 0.tbl <- outdata |>
extend_ae_specific_events() |>
format_ae_specific(
display = c("n", "prop", "events_count", "events_avg"),
filter_method = "percent",
filter_criteria = 6
)
head(tbl$tbl)
#> name n_1 prop_1 eventsavg_1
#> 1 Participants in population 86 <NA> <NA>
#> 2 with one or more drug-related adverse events 44 (51.2) 0.7 ( 0.1)
#> 3 with no drug-related adverse events 42 (48.8) <NA>
#> 4 NA <NA> <NA>
#> 122 Cardiac disorders 6 (7.0) 2.3 ( 0.6)
#> 126 Gastrointestinal disorders 4 (4.7) 1.8 ( 0.5)
#> eventscount_1 n_2 prop_2 eventsavg_2 eventscount_2 n_3 prop_3 eventsavg_3
#> 1 NA 84 <NA> <NA> NA 84 <NA> <NA>
#> 2 133 73 (86.9) 1.6 ( 0.2) 292 70 (83.3) 1.5 ( 0.2)
#> 3 NA 11 (13.1) <NA> NA 14 (16.7) <NA>
#> 4 NA NA <NA> <NA> NA NA <NA> <NA>
#> 122 14 7 (8.3) 1.9 ( 0.4) 13 4 (4.8) 1.2 ( 0.2)
#> 126 7 8 (9.5) 1.9 ( 0.4) 15 10 (11.9) 2.1 ( 0.5)
#> eventscount_3
#> 1 NA
#> 2 279
#> 3 NA
#> 4 NA
#> 122 5
#> 126 21
In results above, rows having any one of “prop_x” values are greater than 6 get kept in the output.
We can use sort_order
and sort_column
parameters to sort results based on the specified criteria:
sort_order
A character value to specify sorting order:
alphabetical
: Sort by alphabetical order.count_des
: Sort by count in descending order.count_asc
: Sort by count in ascending order.sort_column A
character value of group
in
outdata
used to sort a table with.tbl <- outdata |>
extend_ae_specific_events() |>
format_ae_specific(
display = c("n", "prop", "events_count", "events_avg"),
sort_order = c("count_des"),
sort_column = c("Placebo")
)
head(tbl$tbl)
#> name n_1 prop_1 eventsavg_1
#> 1 Participants in population 86 <NA> <NA>
#> 2 with one or more drug-related adverse events 44 (51.2) 0.7 ( 0.1)
#> 3 with no drug-related adverse events 42 (48.8) <NA>
#> 4 NA <NA> <NA>
#> 122 Cardiac disorders 6 (7.0) 2.3 ( 0.6)
#> 79 Myocardial infarction 2 (2.3) 1.0 ( 0.0)
#> eventscount_1 n_2 prop_2 eventsavg_2 eventscount_2 n_3 prop_3 eventsavg_3
#> 1 NA 84 <NA> <NA> NA 84 <NA> <NA>
#> 2 133 73 (86.9) 1.6 ( 0.2) 292 70 (83.3) 1.5 ( 0.2)
#> 3 NA 11 (13.1) <NA> NA 14 (16.7) <NA>
#> 4 NA NA <NA> <NA> NA NA <NA> <NA>
#> 122 14 7 (8.3) 1.9 ( 0.4) 13 4 (4.8) 1.2 ( 0.2)
#> 79 2 1 (1.2) 2.0 2 1 (1.2) 1.0
#> eventscount_3
#> 1 NA
#> 2 279
#> 3 NA
#> 4 NA
#> 122 5
#> 79 1
The mock
argument facilitates the creation of a mock
table with ease.
Please note that the intention of the mock
argument is
not to provide an all-encompassing mock table template. Instead, it
serves as a convenient method to assist users in generating a mock table
that closely resembles the desired output layout. To develop a more
versatile mock table generation tool, further efforts are necessary.
This could potentially involve the creation of a dedicated mock table
generation package or similar solutions.
tbl <- outdata |> format_ae_specific(mock = TRUE)
head(tbl$tbl)
#> name n_1 prop_1 n_2 prop_2 n_3
#> 1 Participants in population xx <NA> xx <NA> xx
#> 2 with one or more drug-related adverse events xx (xx.x) xx (xx.x) xx
#> 3 with no drug-related adverse events xx (xx.x) xx (xx.x) xx
#> 4 <NA> <NA> <NA> <NA> <NA>
#> 5 Cardiac disorders x (x.x) x (x.x) x
#> 6 Atrial fibrillation x (x.x) x (x.x) x
#> prop_3 n_4 prop_4
#> 1 <NA> xxx <NA>
#> 2 (xx.x) xxx (xx.x)
#> 3 (xx.x) xx (xx.x)
#> 4 <NA> <NA> <NA>
#> 5 (x.x) xx (x.x)
#> 6 (x.x) x (x.x)
The last step is to prepare the RTF table using
tlf_ae_summary()
.
outdata |>
format_ae_specific() |>
tlf_ae_specific(
meddra_version = "24.0",
source = "Source: [CDISCpilot: adam-adsl; adae]",
path_outtable = "rtf/ae0specific1.rtf"
)
#> The output is saved in/rtmp/RtmpGZp85u/Rbuild2a613d72ebcea3/metalite.ae/vignettes/rtf/ae0specific1.rtf
The tlf_ae_specific()
function also provides some
commonly used arguments to customize the table.
outdata |>
format_ae_specific() |>
tlf_ae_specific(
meddra_version = "24.0",
source = "Source: [CDISCpilot: adam-adsl; adae]",
col_rel_width = c(6, rep(1, 8)),
text_font_size = 8,
orientation = "landscape",
path_outtable = "rtf/ae0specific2.rtf"
)
#> The output is saved in/rtmp/RtmpGZp85u/Rbuild2a613d72ebcea3/metalite.ae/vignettes/rtf/ae0specific2.rtf
The mock table can also be generated.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.