The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

metaSurvival

lifecycle License: MIT GitHub commit Travis build status CRAN status

The goal of metaSurvival is to …

Installation

You can install the released version of metaSurvival from CRAN with:

install.packages("metaSurvival")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("shubhrampandey/metaSurvival")

Example

library(metaSurvival)

First start with loading the example dataset.

data(exampleData)
attach(exampleData)
head(exampleData)
#>   Study FirstAuthor YearPub Time Survival NbRisk Location      Design
#> 1     1         Lai    1988    1   0.8043     46     Asia Monocentric
#> 2     1         Lai    1988    2   0.4565     37     Asia Monocentric
#> 3     1         Lai    1988    3   0.2609     21     Asia Monocentric
#> 4     1         Lai    1988    4   0.1739     12     Asia Monocentric
#> 5     1         Lai    1988    5   0.1304      8     Asia Monocentric
#> 6     1         Lai    1988    6   0.0870      6     Asia Monocentric

Computation of summary survival with continuity correction.

results<-msurv(Study, Time, NbRisk, Survival, confidence="Greenwood",correctionFlag = T,correctionVal = c(0.25,0.5))
results
#> $verif.data
#>    Sstudy check
#> 1       1     1
#> 2       2     1
#> 3       3     1
#> 4       4     1
#> 5       5     1
#> 6       6     1
#> 7       7     1
#> 8       8     1
#> 9       9     1
#> 10     10     1
#> 11     11     1
#> 12     12     1
#> 13     13     1
#> 14     14     1
#> 15     15     1
#> 16     16     1
#> 17     17     1
#> 18     18     1
#> 19     19     1
#> 20     20     1
#> 21     21     1
#> 22     22     1
#> 23     23     1
#> 24     24     1
#> 25     25     1
#> 26     26     1
#> 27     27     1
#> 
#> $summary.fixed
#>       IndiceTimes PooledSurvivalFE PooledSurvivalICinfFE PooledSurvivalICsupFE
#>  [1,]           1       0.94497450            0.93455418            0.95551100
#>  [2,]           2       0.84347436            0.82683765            0.86044583
#>  [3,]           3       0.73872717            0.71857893            0.75944035
#>  [4,]           4       0.66245129            0.64073764            0.68490079
#>  [5,]           5       0.58662304            0.56399133            0.61016291
#>  [6,]           6       0.52144090            0.49844475            0.54549799
#>  [7,]           9       0.40882896            0.38592475            0.43309252
#>  [8,]          12       0.32461488            0.30222075            0.34866838
#>  [9,]          15       0.26174091            0.23995379            0.28550624
#> [10,]          18       0.21983127            0.19855264            0.24339029
#> [11,]          21       0.18810271            0.16733508            0.21144777
#> [12,]          24       0.16086195            0.14062988            0.18400476
#> [13,]          27       0.13906070            0.11917994            0.16225783
#> [14,]          30       0.12241028            0.10252475            0.14615276
#> [15,]          33       0.09697105            0.07643349            0.12302702
#> [16,]          36       0.08104941            0.06104672            0.10760623
#> [17,]          39       0.07799121            0.05761503            0.10557365
#> [18,]          42       0.06960868            0.04863084            0.09963571
#> [19,]          45       0.06635655            0.04527093            0.09726311
#> [20,]          48       0.06295069            0.04180072            0.09480195
#> 
#> $median.fixed
#>              2.5%    97.5% 
#> 6.571189 5.969119 7.163636 
#> 
#> $mean.fixed
#>              2.5%    97.5% 
#> 12.06584 11.28009 12.76527 
#> 
#> $heterogeneity
#> [1] 731.217128   2.521438  60.340098
#> 
#> $summary.random
#>       IndiceTimes PooledSurvivalRE PooledSurvivalICinfRE PooledSurvivalICsupRE
#>  [1,]           1       0.93524921            0.90753843            0.96380610
#>  [2,]           2       0.82628083            0.77535470            0.88055185
#>  [3,]           3       0.70123428            0.63503595            0.77433335
#>  [4,]           4       0.61766270            0.54632825            0.69831133
#>  [5,]           5       0.53060766            0.45992592            0.61215181
#>  [6,]           6       0.44916320            0.37511275            0.53783184
#>  [7,]           9       0.32921715            0.26232834            0.41316134
#>  [8,]          12       0.24431166            0.18426527            0.32392532
#>  [9,]          15       0.18160515            0.13130502            0.25117417
#> [10,]          18       0.14534074            0.10284269            0.20540041
#> [11,]          21       0.11674507            0.07979975            0.17079517
#> [12,]          24       0.09822802            0.06593733            0.14633204
#> [13,]          27       0.08346181            0.05491511            0.12684802
#> [14,]          30       0.07097460            0.04554526            0.11060193
#> [15,]          33       0.05659698            0.03461920            0.09252720
#> [16,]          36       0.04869511            0.02927924            0.08098617
#> [17,]          39       0.04682745            0.02783640            0.07877493
#> [18,]          42       0.03866701            0.02088712            0.07158177
#> [19,]          45       0.03689963            0.01966964            0.06922256
#> [20,]          48       0.03516081            0.01850465            0.06680927
#> 
#> $median.random
#>              2.5%    97.5% 
#> 5.375810 4.469860 6.676145 
#> 
#> $mean.random
#>                2.5%     97.5% 
#>  9.554813  7.764589 11.465606

Plot the estimates summary survival

RandomEffectSummary<- results$summary.random

plot(Time, Survival, type="n", col="grey", ylim=c(0,1),xlab="Time",
 ylab="Survival")
 
for (i in unique(sort(Study))){
lines(Time[Study==i], Survival[Study==i], type="l", col="grey")
points(max(Time[Study==i]),
 Survival[Study==i & Time==max(Time[Study==i])], pch=15)
}

lines(RandomEffectSummary[,1], RandomEffectSummary[,2], type="l",
 col="red", lwd=3)
points(RandomEffectSummary[,1], RandomEffectSummary[,3], type="l",
 col="red", lty=3, lwd=3)
points(RandomEffectSummary[,1], RandomEffectSummary[,4], type="l",
 col="red", lty=3, lwd=3)

Computation of summary survival without continuity correction.

results<-msurv(Study, Time, NbRisk, Survival, confidence="Greenwood",correctionFlag = F)
results
#> $verif.data
#>    Sstudy check
#> 1       1     1
#> 2       2     1
#> 3       3     1
#> 4       4     1
#> 5       5     1
#> 6       6     1
#> 7       7     1
#> 8       8     1
#> 9       9     1
#> 10     10     1
#> 11     11     1
#> 12     12     1
#> 13     13     1
#> 14     14     1
#> 15     15     1
#> 16     16     1
#> 17     17     1
#> 18     18     1
#> 19     19     1
#> 20     20     1
#> 21     21     1
#> 22     22     1
#> 23     23     1
#> 24     24     1
#> 25     25     1
#> 26     26     1
#> 27     27     1
#> 
#> $summary.fixed
#>       IndiceTimes PooledSurvivalFE PooledSurvivalICinfFE PooledSurvivalICsupFE
#>  [1,]           1        0.9508837            0.93115618             0.9710293
#>  [2,]           2        0.8542395            0.82202310             0.8877185
#>  [3,]           3        0.7529489            0.71356234             0.7945096
#>  [4,]           4        0.6801444            0.63752795             0.7256097
#>  [5,]           5        0.6081467            0.56352148             0.6563058
#>  [6,]           6        0.5449696            0.49936809             0.5947354
#>  [7,]           9        0.4303415            0.38446782             0.4816886
#>  [8,]          12        0.3452733            0.30011887             0.3972213
#>  [9,]          15        0.2814425            0.23729653             0.3338012
#> [10,]          18        0.2411057            0.19773211             0.2939935
#> [11,]          21        0.2109529            0.16828161             0.2644443
#> [12,]          24        0.1858428            0.14380950             0.2401619
#> [13,]          27        0.1671095            0.12528742             0.2228921
#> [14,]          30        0.1549979            0.11269730             0.2131760
#> [15,]          33        0.1322367            0.08722757             0.2004703
#> [16,]          36        0.1201395            0.07462625             0.1934106
#> [17,]          39        0.1201395            0.07462625             0.1934106
#> [18,]          42        0.1144864            0.06665886             0.1966300
#> [19,]          45        0.1144864            0.06665886             0.1966300
#> [20,]          48        0.1144864            0.06665886             0.1966300
#> 
#> $median.fixed
#>              2.5%    97.5% 
#> 7.176926 5.923614 8.344025 
#> 
#> $mean.fixed
#>              2.5%    97.5% 
#> 13.46370 11.45324 14.73451 
#> 
#> $heterogeneity
#> [1] 219.6071244   0.7572659   0.0000000
#> 
#> $summary.random
#>       IndiceTimes PooledSurvivalRE PooledSurvivalICinfRE PooledSurvivalICsupRE
#>  [1,]           1       0.94768647            0.91731470             0.9790638
#>  [2,]           2       0.84755282            0.78823478             0.9113348
#>  [3,]           3       0.73182809            0.65606515             0.8163402
#>  [4,]           4       0.65409564            0.56903170             0.7518757
#>  [5,]           5       0.57872161            0.49473929             0.6769600
#>  [6,]           6       0.50184228            0.41034422             0.6137425
#>  [7,]           9       0.38269038            0.29711268             0.4929171
#>  [8,]          12       0.29890154            0.22167479             0.4030324
#>  [9,]          15       0.23629264            0.16877051             0.3308292
#> [10,]          18       0.20208143            0.14274382             0.2860853
#> [11,]          21       0.17082971            0.11580178             0.2520064
#> [12,]          24       0.15126442            0.10079984             0.2269937
#> [13,]          27       0.13757394            0.09019805             0.2098337
#> [14,]          30       0.12300453            0.07677350             0.1970747
#> [15,]          33       0.10536383            0.06049565             0.1835097
#> [16,]          36       0.10074068            0.05720945             0.1773952
#> [17,]          39       0.10074068            0.05720945             0.1773952
#> [18,]          42       0.08499342            0.03811229             0.1895420
#> [19,]          45       0.08499342            0.03811229             0.1895420
#> [20,]          48       0.08499342            0.03811229             0.1895420
#> 
#> $median.random
#>              2.5%    97.5% 
#> 6.046385 4.826019 8.540219 
#> 
#> $mean.random
#>                2.5%     97.5% 
#> 11.929471  9.190071 14.485928

Plot the estimates summary survival

RandomEffectSummary<- results$summary.random

plot(Time, Survival, type="n", col="grey", ylim=c(0,1),xlab="Time",
 ylab="Survival")
 
for (i in unique(sort(Study))){
lines(Time[Study==i], Survival[Study==i], type="l", col="grey")
points(max(Time[Study==i]),
 Survival[Study==i & Time==max(Time[Study==i])], pch=15)
}

lines(RandomEffectSummary[,1], RandomEffectSummary[,2], type="l",
 col="red", lwd=3)
points(RandomEffectSummary[,1], RandomEffectSummary[,3], type="l",
 col="red", lty=3, lwd=3)
points(RandomEffectSummary[,1], RandomEffectSummary[,4], type="l",
 col="red", lty=3, lwd=3)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.