The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette demonstrates how flattened contingency tables can be combined into more complex tables. For starters, we create a few contingendy tables.
tab.Class.Age <- xtabs(Freq~Class+Age,data=Titanic)
tab.Survived.Class.Age <- xtabs(Freq~Survived+Class+Age,data=Titanic)
tab.Survived.Class.Sex <- xtabs(Freq~Survived+Class+Sex,data=Titanic)
tab.Survived.Class <- xtabs(Freq~Survived+Class,data=Titanic)
tab.Survived.Sex <- xtabs(Freq~Survived+Sex,data=Titanic)
tab.Survived.Age <- xtabs(Freq~Survived+Age,data=Titanic)
tab.Survived <- xtabs(Freq~Survived,data=Titanic)
Then we load the memisc package:
Next, we create a few flattened contingency tables:
Age Child Adult
Survived
No 52 1438
Yes 57 654
Sex Male Female
Survived
No 1364 126
Yes 367 344
Since these tables have the same row variables, we can combine them columnwise:
Age Child Adult Sex Male Female
Survived
No 52 1438 1364 126
Yes 57 654 367 344
We can even add a simple table of counts:
Age Child Adult Sex Male Female Total
Survived
No 52 1438 1364 126 1490
Yes 57 654 367 344 711
Of course, it is not enough to see such tables on screen, we also may
need them in a presentable format, such as LaTeX or HTML. For the latter
format we again have format_html
and
show_html
. To see how this works, we first look at the
individual ftable
s:
Age | |||||||
Survived | Child | Adult | |||||
No | 52 | 1438 | |||||
Yes | 57 | 654 |
Sex | |||||||
Survived | Male | Female | |||||
No | 1364 | 126 | |||||
Yes | 367 | 344 |
… and then at their combination
Age | Sex | |||||||||||||||
Child | Adult | Male | Female | Total | ||||||||||||
Survived | No | 52 | 1438 | 1364 | 126 | 1490 | ||||||||||
Yes | 57 | 654 | 367 | 344 | 711 |
To make, in “knitr”, the creation of HTML-versions automatic one can use the following little trick:
knit_print.ftable_matrix <-function(x,options,...)
knitr::asis_output(
format_html(x,
digits=if(length(options$ftable.digits))
options$ftable.digits
else 0,
...))
Now we do not need to call show_html
while using
“knitr”:
Age | Sex | |||||||||||||||
Child | Adult | Male | Female | Total | ||||||||||||
Survived | No | 52 | 1438 | 1364 | 126 | 1490 | ||||||||||
Yes | 57 | 654 | 367 | 344 | 711 |
This can be undone by removing the method function of
knit_print
:
For show_html
and toLatex
there are some
variants in how the variable names are positioned, for example:
Age | Sex | ||||||||||||||
Survived | Child | Adult | Male | Female | Total | ||||||||||
No | 52 | 1438 | 1364 | 126 | 1490 | ||||||||||
Yes | 57 | 654 | 367 | 344 | 711 |
Age: | Child | Adult | Sex: | Male | Female | Total | ||||||||||||
Survived | No | 52 | 1438 | 1364 | 126 | 1490 | ||||||||||||
Yes | 57 | 654 | 367 | 344 | 711 |
Of course it is also possible to combine flat contingency tables rowwise:
ftab.Age.Survived <- ftable(tab.Survived.Age,col.vars=1)
ftab.Sex.Survived <- ftable(tab.Survived.Sex,col.vars=1)
ftab.Class.Survived <- ftable(tab.Survived.Class,col.vars=1)
rbind(
ftab.Age.Survived,
ftab.Sex.Survived,
ftab.Class.Survived,
Total=tab.Survived
)
Survived No Yes
Age
Child 52 57
Adult 1438 654
Sex
Male 1364 367
Female 126 344
Class
1st 122 203
2nd 167 118
3rd 528 178
Crew 673 212
Total 1490 711
Survived | |||||||
No | Yes | ||||||
Age | Child | 52 | 57 | ||||
Adult | 1438 | 654 | |||||
Sex | Male | 1364 | 367 | ||||
Female | 126 | 344 | |||||
Class | 1st | 122 | 203 | ||||
2nd | 167 | 118 | |||||
3rd | 528 | 178 | |||||
Crew | 673 | 212 | |||||
Total | 1490 | 711 |
It is also possible to create the ftable
s from tables of
percentages or generic tables (created with genTable
)
etc.
ptab.Survived.Age<-percentages(Survived~Age,data=Titanic)
ptab.Survived.Sex<-percentages(Survived~Sex,data=Titanic)
ptab.Survived.Class<-percentages(Survived~Class,data=Titanic)
fptab.Age.Survived <- ftable(ptab.Survived.Age,col.vars=1)
fptab.Sex.Survived <- ftable(ptab.Survived.Sex,col.vars=1)
fptab.Class.Survived <- ftable(ptab.Survived.Class,col.vars=1)
show_html(
rbind(
fptab.Age.Survived,
fptab.Sex.Survived,
fptab.Class.Survived
),
digits=1
)
Survived | |||||||
No | Yes | ||||||
Age | Child | 47 | . | 7 | 52 | . | 3 |
Adult | 68 | . | 7 | 31 | . | 3 | |
Sex | Male | 78 | . | 8 | 21 | . | 2 |
Female | 26 | . | 8 | 73 | . | 2 | |
Class | 1st | 37 | . | 5 | 62 | . | 5 |
2nd | 58 | . | 6 | 41 | . | 4 | |
3rd | 74 | . | 8 | 25 | . | 2 | |
Crew | 76 | . | 0 | 24 | . | 0 |
It is also possible to combine rbind
and
cbind
:
tab.Age <- xtabs(Freq~Age,data=Titanic)
tab.Sex <- xtabs(Freq~Sex,data=Titanic)
tab.Class <- xtabs(Freq~Class,data=Titanic)
show_html(
rbind(
cbind(fptab.Age.Survived,Total=tab.Age),
cbind(fptab.Sex.Survived,Total=tab.Sex),
cbind(fptab.Class.Survived,Total=tab.Class)
),
digits=c(1,0) # One digit after dot for percentages
# no digits for total counts.
)
Survived | ||||||||||
No | Yes | Total | ||||||||
Age | Child | 47 | . | 7 | 52 | . | 3 | 109 | ||
Adult | 68 | . | 7 | 31 | . | 3 | 2092 | |||
Sex | Male | 78 | . | 8 | 21 | . | 2 | 1731 | ||
Female | 26 | . | 8 | 73 | . | 2 | 470 | |||
Class | 1st | 37 | . | 5 | 62 | . | 5 | 325 | ||
2nd | 58 | . | 6 | 41 | . | 4 | 285 | |||
3rd | 74 | . | 8 | 25 | . | 2 | 706 | |||
Crew | 76 | . | 0 | 24 | . | 0 | 885 |
The same construct as LaTeX code:
toLatex(
rbind(
cbind(fptab.Age.Survived,Total=tab.Age),
cbind(fptab.Sex.Survived,Total=tab.Sex),
cbind(fptab.Class.Survived,Total=tab.Class)
),
digits=c(1,0) # One digit after dot for percentages
# no digits for total counts.
)
\begin{tabular}{llD{.}{.}{1}D{.}{.}{1}cD{.}{.}{0}}
\toprule
&&\multicolumn{2}{c}{Survived}&&\\
\cmidrule{3-4}
&&\multicolumn{1}{c}{No}&\multicolumn{1}{c}{Yes}&&\multicolumn{1}{c}{Total}\\
\midrule
Age & Child & 47.7 & 52.3 & & 109\\
& Adult & 68.7 & 31.3 & & 2092\\
\midrule Sex & Male & 78.8 & 21.2 & & 1731\\
& Female & 26.8 & 73.2 & & 470\\
\midrule Class & 1st & 37.5 & 62.5 & & 325\\
& 2nd & 58.6 & 41.4 & & 285\\
& 3rd & 74.8 & 25.2 & & 706\\
& Crew & 76.0 & 24.0 & & 885\\
\bottomrule
\end{tabular}
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.