The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Markov Chain Analysis for Structural Behaviour and Stability
Type: Package
Version: 0.1.0
Author: Dr. Pramit Pandit [aut, cre], Mr. Ankit Kumar Singh [aut], Ms. Anita Sarkar [aut], Ms. Moumita Paul [aut], Dr. Bikramjeet Ghose [aut]
Maintainer: Dr. Pramit Pandit <pramitpandit@gmail.com>
Description: Analyses the stability and structural behaviour of export and import patterns across multiple countries using a Markov chain modelling framework. Constructs transition probability matrices to quantify changes in trade shares between successive periods, thereby capturing persistence, structural shifts, and inter-country interdependence in trade performance. By iteratively generating expected trade distributions over time, the approach facilitates assessment of stability, long-run equilibrium tendencies, and comparative dynamics in longitudinal trade data, providing a rigorous tool for empirical analysis of export–import behaviour. Methodological foundations follow standard Markov chain theory as described in Gagniuc (2017) <Doi:10.1002/9781119387596>.
License: GPL-3
Encoding: UTF-8
RoxygenNote: 7.3.3
NeedsCompilation: no
Packaged: 2026-01-10 05:57:11 UTC; Pramit
Repository: CRAN
Date/Publication: 2026-01-15 17:10:02 UTC

Calculate Expected Values using a Transition Matrix

Description

Calculate Expected Values using a Transition Matrix

Usage

calculate_expected(df, tm)

Arguments

df

A data frame where the first column is a time indicator (e.g., Year) and subsequent columns contain numeric values for different entities.

tm

A square transition probability matrix (TPM) where dimensions match the number of entities in df.

Value

A data frame containing the original time indicator and the calculated expected values, rounded to 2 decimal places.

Examples

data <- data.frame(
  Year = 2009:2019,
  Country1 = c(136282.02, 182810.3, 252665.95, 170179.0, 227754.5,
               183355.08, 173966.0, 185902.24, 218786.72, 203095.96, 213821.57),
  Country2 = c(1204.78, 2977.8, 241496.85, 139362.9, 40466.0,
               183771.04, 18418.0, 158388.14, 50780.6, 38225.01, 140453.68),
  Country3 = c(61619.92, 46009.64, 54823.95, 57906.1, 60384.0,
               66320.51, 50699.0, 50737.0, 44180.35, 47064.0, 47672.62),
  Country4 = c(63837.63, 71175.86, 76595.18, 70274.68, 59258.64,
               68927.62, 72211.32, 62783.33, 34565.08, 29965.35, 35145.76),
  Country5 = c(8512.95, 11496.78, 32888.2, 22765.61, 23116.0,
               34457.4, 63048.0, 44125.08, 10829.03, 25439.9, 30022.83),
  Country6 = c(3400.56, 19675.75, 38339.7, 4721.01, 2686.8,
               33677.3, 15791.0, 22382.0, 627.0, 895.0, 34082.0),
  Country7 = c(65388.45, 99607.1, 135807.1, 70428.06, 95998.9,
               137877.31, 148593.09, 201386.55, 144250.42, 144501.89, 163244.46)
)

transition_matrix <- create_tpm(data)

expected_results <- calculate_expected(data, transition_matrix)
expected_results

Create a Transition Probability Matrix (TPM)

Description

Create a Transition Probability Matrix (TPM)

Usage

create_tpm(df)

Arguments

df

A data frame where the first column is a time indicator (e.g., Year) and subsequent columns contain numeric values for different entities (e.g., countries).

Value

A square matrix representing the transition probabilities between entities, rounded to 4 decimal places.

Examples

data <- data.frame(
  Year = 2009:2019,
  Country1 = c(136282.02, 182810.3, 252665.95, 170179.0, 227754.5,
               183355.08, 173966.0, 185902.24, 218786.72, 203095.96, 213821.57),
  Country2 = c(1204.78, 2977.8, 241496.85, 139362.9, 40466.0,
               183771.04, 18418.0, 158388.14, 50780.6, 38225.01, 140453.68),
  Country3 = c(61619.92, 46009.64, 54823.95, 57906.1, 60384.0,
               66320.51, 50699.0, 50737.0, 44180.35, 47064.0, 47672.62),
  Country4 = c(63837.63, 71175.86, 76595.18, 70274.68, 59258.64,
               68927.62, 72211.32, 62783.33, 34565.08, 29965.35, 35145.76),
  Country5 = c(8512.95, 11496.78, 32888.2, 22765.61, 23116.0,
               34457.4, 63048.0, 44125.08, 10829.03, 25439.9, 30022.83),
  Country6 = c(3400.56, 19675.75, 38339.7, 4721.01, 2686.8,
               33677.3, 15791.0, 22382.0, 627.0, 895.0, 34082.0),
  Country7 = c(65388.45, 99607.1, 135807.1, 70428.06, 95998.9,
               137877.31, 148593.09, 201386.55, 144250.42, 144501.89, 163244.46)
)

transition_matrix <- create_tpm(data)
transition_matrix

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.