The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(mbsts)
This is the introduction to the mbsts package. You can use the sim_data function to generate a simulated dataset like this:
###############Setup###########
<-505 #n: sample size
n<-2 #m: dimension of target series
m
<-matrix(c(1.1,0.7,0.7,0.9), nrow=2, ncol=2) #covariance matrix of target series
cov
###############Regression component###########
#coefficients for predictors
<-t(matrix(c(2,-1.5,0,4,2.5,0,0,2.5,1.5,-1,-2,0,0,-3,3.5,0.5),nrow=2,ncol=8))
beta
set.seed(100)
#predictors
<-rnorm(n,5,5^2)
X1<-rnorm(n,-2,5)
X4<-rnorm(n,-5,5^2)
X5<-rnorm(n,0,100)
X8<-rpois(n, 10)
X2<-rpois(n, 15)
X6<-rpois(n, 20)
X7<-rpois(n, 5)
X3<-cbind(X1,X2,X3,X4,X5,X6,X7,X8)
X
###############Simulated data################
set.seed(100)
=sim_data(X=X, beta=beta, cov, k=c(8,8), mu=c(1,1), rho=c(0.6,0.8),
dataDtilde=c(-1,3), Season=c(100,0),
vrho=c(0,0.99),lambda=c(0,pi/100))
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.