The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Tests for block-diagonal structure in symmetric matrices (e.g. correlation matrices) under the null hypothesis of exchangeable off-diagonal elements. As described in Segal et al. (2019), these tests can be useful for construct validation either by themselves or as a complement to confirmatory factor analysis. Monte Carlo methods are used to approximate the permutation p-value with Hubert’s Gamma (Hubert, 1976) and a t-statistic. This package also implements the chi-squared statistic described by Steiger (1980).
install.packages("matrixStrucTest")
library(matrixStrucTest)
library(ggplot2)
library(reshape2)
# prepare data for matrixStrucTest -------------------------------------------------
data("big5")
# get column numbers for questionnaire items
items <- grep("[0-9]", colnames(big5))
# compute Spearman's correlation matrix
A <- cor(big5[, items], use = "complete.obs", method = "spearman")
# Specify groups
groups <- "extrovert ~ E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + E10
neurotic ~ N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + N10
agreeable ~ A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10
conscientious ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10
open ~ O1 + O2 + O3 + O4 + O5 + O6 + O7 + O8 + O9 + O10"
# compute permutation p-values ------------------------------------------------
result <- matrixStrucTest(A = A, groups = groups, B = 1000, absolute = TRUE)
result
# Visualize groups ------------------------------------------------------------
ord <- unlist(result$group_list)
diag(A) <- NA # remove diagonals from color scale
Am <- melt(A[ord, ord])
names(Am) <- c("x", "y", "value")
Am$y <- factor(Am$y, levels = rev(levels(Am$y)))
ggplot(aes(x = x, y = y, fill = abs(value)), data = Am)+
geom_tile()+
theme_bw(18)+
scale_fill_gradient2(space="Lab", name="abs(Cor)", lim = c(0, 1))+
labs(x = "", y = "")+
theme(axis.text.x = element_text(angle = 90, vjust = .35,hjust=1))
Hubert, L., Schultz, J. (1976) Quadratic assignment as a general data analysis strategy. British Journal of Mathematical and Statistical Psychology, 29(2):190–241.
Segal, B. D., Braun, T., Gonzalez, R., and Elliott, M. R. (2019). Tests of matrix structure for construct validation. Psychometrika, 84(1), 65-83.
Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2):245–251.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.