The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette uses an example of a \(3 \times 3\) matrix to illustrate some properties of eigenvalues and eigenvectors. We could consider this to be the variance-covariance matrix of three variables, but the main thing is that the matrix is square and symmetric, which guarantees that the eigenvalues, \(\lambda_i\) are real numbers, and non-negative, \(\lambda_i \ge 0\).
## [,1] [,2] [,3]
## [1,] 13 -4 2
## [2,] -4 11 -2
## [3,] 2 -2 8
Get the eigenvalues and eigenvectors using eigen()
; this
returns a named list, with eigenvalues named values
and
eigenvectors named vectors
. We call these L
and V
here, but in formulas they correspond to a diagonal
matrix, \(\mathbf{\Lambda} = diag(\lambda_1,
\lambda_2, \lambda_3)\), and a (orthogonal) matrix \(\mathbf{V}\).
## [1] 17 8 7
## [,1] [,2] [,3]
## [1,] 0.7454 0.6667 0.0000
## [2,] -0.5963 0.6667 0.4472
## [3,] 0.2981 -0.3333 0.8944
## [,1] [,2] [,3]
## [1,] 13 -4 2
## [2,] -4 11 -2
## [3,] 2 -2 8
## [,1] [,2] [,3]
## [1,] 17 0 0
## [2,] 0 8 0
## [3,] 0 0 7
## [,1] [,2] [,3]
## [1,] 17 0 0
## [2,] 0 8 0
## [3,] 0 0 7
The basic idea here is that each eigenvalue–eigenvector pair generates a rank 1 matrix, \(\lambda_i \mathbf{v}_i \mathbf{v}_i '\), and these sum to the original matrix, \(\mathbf{A} = \sum_i \lambda_i \mathbf{v}_i \mathbf{v}_i '\).
## [,1] [,2] [,3]
## [1,] 9.444 -7.556 3.778
## [2,] -7.556 6.044 -3.022
## [3,] 3.778 -3.022 1.511
## [,1] [,2] [,3]
## [1,] 3.556 3.556 -1.7778
## [2,] 3.556 3.556 -1.7778
## [3,] -1.778 -1.778 0.8889
## [,1] [,2] [,3]
## [1,] 0 0.0 0.0
## [2,] 0 1.4 2.8
## [3,] 0 2.8 5.6
Then, summing them gives A
, so they do decompose
A
:
## [,1] [,2] [,3]
## [1,] 13 -4 2
## [2,] -4 11 -2
## [3,] 2 -2 8
## [1] TRUE
## [1] 402
## [1] 289 64 49
## [1] 402
## [1] 402
## [1] 289 64 49
## [1] 289 353 402
A
## [1] 1
## [1] 2
## [1] 3
## [1] 353
## [1] 0.8781
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.