The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This short tutorial gives an example of statistically assessing whether a market is in an equilibrium state. The tutorial assumes some familiarity with the concepts and the functionality of the package. The basic_usage vignette can be helpful in acquiring this familiarity.
Load the required libraries.
library(markets)
Prepare the data. Here, we simply simulate data using a data generating process for a market in equilibrium.
1000
nobs <- 5
tobs <-
-3.9
alpha_d <- 28.9
beta_d0 <- c(2.1, -0.7)
beta_d <- c(3.5, 6.25)
eta_d <-
2.8
alpha_s <- 26.2
beta_s0 <- c(2.65)
beta_s <- c(1.15, 4.2)
eta_s <-
0.8
sigma_d <- 1.1
sigma_s <- 0.0
rho_ds <-
42
seed <-
simulate_data(
eq_data <-"equilibrium_model", nobs, tobs,
alpha_d, beta_d0, beta_d, eta_d,
alpha_s, beta_s0, beta_s, eta_s,NA, NA, c(NA),
sigma_d = sigma_d, sigma_s = sigma_s, rho_ds = rho_ds,
seed = seed
)
Prepare the basic parameters for model initialization.
2
verbose <- TRUE
correlated_shocks <- Q | P | id | date ~ P + Xd1 + Xd2 + X1 + X2 | P + Xs1 + X1 + X2 formula <-
Set the estimation parameters.
"BFGS"
optimization_method <- list(maxit = 10000, reltol = 1e-8) optimization_options <-
Using the above parameterization, construct and estimate the model objects. Here we estimate two equilibrium models and four disequilibrium models. All the models are constructed using the simulated data from a model of market in equilibrium.
equilibrium_model(
eq_reg <-$date != 1, ],
formula, eq_data[eq_datacorrelated_shocks = correlated_shocks, verbose = verbose,
estimation_options = list(method = "2SLS")
)#> Info: This is Equilibrium model.
#> Warning: Removing unobserved '1' level(s).
equilibrium_model(
eq_fit <-$date != 1, ],
formula, eq_data[eq_datacorrelated_shocks = correlated_shocks, verbose = verbose,
estimation_options = list(
control = optimization_options, method = optimization_method
)
)#> Info: This is Equilibrium model.
#> Warning: Removing unobserved '1' level(s).
diseq_basic(
bs_fit <-$date != 1, ],
formula, eq_data[eq_datacorrelated_shocks = correlated_shocks, verbose = verbose,
estimation_options = list(
control = optimization_options, method = optimization_method
)
)#> Info: This is Basic model.
#> Warning: Removing unobserved '1' level(s).
diseq_deterministic_adjustment(
da_fit <-
formula, eq_data,correlated_shocks = correlated_shocks, verbose = verbose,
estimation_options = list(
control = optimization_options, method = optimization_method
)
)#> Info: This is Deterministic Adjustment model.
#> Info: Dropping 1000 rows to generate 'LAGGED_P'.
#> Info: Sample separated with 2000 rows in excess supply and 2000 rows in
#> excess demand states.
All the models provide estimates for the simulated data. Even with simulated data, it is difficult to assess which model performs better by examining only the summaries in separation or collectively.
summary(eq_reg)
#> Equilibrium Model for Markets in Equilibrium:
#> Demand RHS : D_P + D_Xd1 + D_Xd2 + D_X1 + D_X2
#> Supply RHS : S_P + S_Xs1 + S_X1 + S_X2
#> Market Clearing : Q = D_Q = S_Q
#> Shocks : Correlated
#> Nobs : 4000
#> Sample Separation : Not Separated
#> Quantity Var : Q
#> Price Var : P
#> Key Var(s) : id, date
#> Time Var : date
#>
#> Least squares estimation:
#> Method : 2SLS
#>
#> Shocks:
#> D_VARIANCE : 0.649543
#> S_VARIANCE : 1.28046
#> RHO : -0.0191552
#>
#> First Stage:
#>
#> Call:
#> lm(formula = first_stage_formula, data = object@data)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.88388 -0.14215 0.00305 0.14088 0.81967
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.402566 0.003302 121.91 <2e-16 ***
#> Xd1 0.313982 0.003288 95.50 <2e-16 ***
#> Xd2 -0.103262 0.003274 -31.54 <2e-16 ***
#> X1 0.348932 0.003262 106.98 <2e-16 ***
#> X2 0.306357 0.003222 95.07 <2e-16 ***
#> Xs1 -0.398531 0.003284 -121.36 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.2087 on 3994 degrees of freedom
#> Multiple R-squared: 0.9194, Adjusted R-squared: 0.9193
#> F-statistic: 9110 on 5 and 3994 DF, p-value: < 2.2e-16
#>
#>
#> Demand Equation:
#>
#> Call:
#> lm(formula = demand_formula, data = object@data)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.41586 -0.50003 0.00523 0.49533 2.71617
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 28.89089 0.01657 1744.02 <2e-16 ***
#> P_FITTED -3.87656 0.02886 -134.32 <2e-16 ***
#> Xd1 2.10510 0.01475 142.74 <2e-16 ***
#> Xd2 -0.70778 0.01190 -59.49 <2e-16 ***
#> X1 3.50747 0.01514 231.61 <2e-16 ***
#> X2 6.24655 0.01436 434.93 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.7311 on 3994 degrees of freedom
#> Multiple R-squared: 0.9849, Adjusted R-squared: 0.9849
#> F-statistic: 5.214e+04 on 5 and 3994 DF, p-value: < 2.2e-16
#>
#>
#> Supply Equation:
#>
#> Call:
#> lm(formula = supply_formula, data = object@data)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.4183 -0.4975 0.0040 0.4951 2.7379
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 26.18624 0.01803 1452.13 <2e-16 ***
#> P_FITTED 2.84269 0.03483 81.62 <2e-16 ***
#> Xs1 2.67766 0.01818 147.27 <2e-16 ***
#> X1 1.16279 0.01658 70.13 <2e-16 ***
#> X2 4.18829 0.01569 266.97 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.7312 on 3995 degrees of freedom
#> Multiple R-squared: 0.9849, Adjusted R-squared: 0.9849
#> F-statistic: 6.517e+04 on 4 and 3995 DF, p-value: < 2.2e-16
summary(eq_fit)
#> Equilibrium Model for Markets in Equilibrium:
#> Demand RHS : D_P + D_Xd1 + D_Xd2 + D_X1 + D_X2
#> Supply RHS : S_P + S_Xs1 + S_X1 + S_X2
#> Market Clearing : Q = D_Q = S_Q
#> Shocks : Correlated
#> Nobs : 4000
#> Sample Separation : Not Separated
#> Quantity Var : Q
#> Price Var : P
#> Key Var(s) : id, date
#> Time Var : date
#>
#> Maximum likelihood estimation:
#> Method : BFGS
#> Max Iterations : 10000
#> Relative Tolerance : 1e-08
#> Convergence Status : success
#> Starting Values :
#> D_P D_CONST D_Xd1 D_Xd2 D_X1 D_X2 S_P
#> -3.87656 28.89089 2.10510 -0.70778 3.50747 6.24655 2.84269
#> S_CONST S_Xs1 S_X1 S_X2 D_VARIANCE S_VARIANCE RHO
#> 26.18624 2.67766 1.16279 4.18829 0.64954 1.28046 -0.01916
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> D_P -3.8765719 0.03186718 -121.647776 0.000000e+00 ***
#> D_CONST 28.8908986 0.01829018 1579.584931 0.000000e+00 ***
#> D_Xd1 2.1050283 0.01626942 129.385552 0.000000e+00 ***
#> D_Xd2 -0.7080066 0.01315280 -53.829327 0.000000e+00 ***
#> D_X1 3.5074834 0.01672158 209.757904 0.000000e+00 ***
#> D_X2 6.2465545 0.01585720 393.925394 0.000000e+00 ***
#> S_P 2.8428079 0.05398669 52.657571 0.000000e+00 ***
#> S_CONST 26.1861986 0.02795397 936.761226 0.000000e+00 ***
#> S_Xs1 2.6776937 0.02818529 95.003218 0.000000e+00 ***
#> S_X1 1.1627557 0.02570360 45.237072 0.000000e+00 ***
#> S_X2 4.1882570 0.02431923 172.219984 0.000000e+00 ***
#> D_VARIANCE 0.6493577 0.01586064 40.941451 0.000000e+00 ***
#> S_VARIANCE 1.2802231 0.03545676 36.106606 1.786441e-285 ***
#> RHO -0.0191747 0.01810478 -1.059096 2.895561e-01
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -2 log L: 6722.675
summary(bs_fit)
#> Basic Model for Markets in Disequilibrium:
#> Demand RHS : D_P + D_Xd1 + D_Xd2 + D_X1 + D_X2
#> Supply RHS : S_P + S_Xs1 + S_X1 + S_X2
#> Short Side Rule : Q = min(D_Q, S_Q)
#> Shocks : Correlated
#> Nobs : 4000
#> Sample Separation : Not Separated
#> Quantity Var : Q
#> Price Var : P
#> Key Var(s) : id, date
#> Time Var : date
#>
#> Maximum likelihood estimation:
#> Method : BFGS
#> Max Iterations : 10000
#> Relative Tolerance : 1e-08
#> Convergence Status : success
#> Starting Values :
#> D_P D_CONST D_Xd1 D_Xd2 D_X1 D_X2 S_P
#> -3.3899 28.6909 1.9497 -0.6543 3.3398 6.0968 1.5864
#> S_CONST S_Xs1 S_X1 S_X2 D_VARIANCE S_VARIANCE RHO
#> 26.6854 2.1697 1.5963 4.5814 0.6012 1.0378 0.0000
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> D_P -3.5088088 0.04551884 -77.08476 0.000000e+00 ***
#> D_CONST 29.1228978 0.03417797 852.09566 0.000000e+00 ***
#> D_Xd1 2.0718884 0.02548591 81.29544 0.000000e+00 ***
#> D_Xd2 -0.7088276 0.01664702 -42.57985 0.000000e+00 ***
#> D_X1 3.3652961 0.02550096 131.96745 0.000000e+00 ***
#> D_X2 6.1435192 0.02476660 248.05664 0.000000e+00 ***
#> S_P 2.0706215 0.10815459 19.14502 1.065016e-81 ***
#> S_CONST 27.8541734 0.05866940 474.76489 0.000000e+00 ***
#> S_Xs1 2.5828274 0.06442783 40.08869 0.000000e+00 ***
#> S_X1 1.4475854 0.05411164 26.75183 1.175668e-157 ***
#> S_X2 4.3986442 0.05382927 81.71473 0.000000e+00 ***
#> D_VARIANCE 0.6386261 0.02339828 27.29373 5.035179e-164 ***
#> S_VARIANCE 1.1248997 0.07255514 15.50407 3.256172e-54 ***
#> RHO -0.4708618 0.04042810 -11.64689 2.379768e-31 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -2 log L: 8338.912
summary(da_fit)
#> Deterministic Adjustment Model for Markets in Disequilibrium:
#> Demand RHS : D_P + D_Xd1 + D_Xd2 + D_X1 + D_X2
#> Supply RHS : S_P + S_Xs1 + S_X1 + S_X2
#> Short Side Rule : Q = min(D_Q, S_Q)
#> Separation Rule : P_DIFF analogous to (D_Q - S_Q)
#> Shocks : Correlated
#> Nobs : 4000
#> Sample Separation : Demand Obs = 2000, Supply Obs = 2000
#> Quantity Var : Q
#> Price Var : P
#> Key Var(s) : id, date
#> Time Var : date
#>
#> Maximum likelihood estimation:
#> Method : BFGS
#> Max Iterations : 10000
#> Relative Tolerance : 1e-08
#> Convergence Status : success
#> Starting Values :
#> D_P D_CONST D_Xd1 D_Xd2 D_X1 D_X2 S_P
#> -3.3899420 28.6908902 1.9497497 -0.6543147 3.3398395 6.0967924 1.5864480
#> S_CONST S_Xs1 S_X1 S_X2 P_DIFF D_VARIANCE S_VARIANCE
#> 26.6853581 2.1696502 1.5962938 4.5814415 -0.0007971 0.6012371 1.0378385
#> RHO
#> 0.0000000
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> D_P -3.875716134 0.03401979 -113.92535355 0.000000e+00 ***
#> D_CONST 28.891196214 0.01878435 1538.04621654 0.000000e+00 ***
#> D_Xd1 2.105016163 0.01627352 129.35220630 0.000000e+00 ***
#> D_Xd2 -0.707967193 0.01315450 -53.81940567 0.000000e+00 ***
#> D_X1 3.507453596 0.01672789 209.67704234 0.000000e+00 ***
#> D_X2 6.246539693 0.01585981 393.85974949 0.000000e+00 ***
#> S_P 2.842225125 0.05500796 51.66933974 0.000000e+00 ***
#> S_CONST 26.187074381 0.03101179 844.42312307 0.000000e+00 ***
#> S_Xs1 2.677786510 0.02819124 94.98646042 0.000000e+00 ***
#> S_X1 1.162670211 0.02570939 45.22355534 0.000000e+00 ***
#> S_X2 4.188174719 0.02432559 172.17158032 0.000000e+00 ***
#> P_DIFF 0.001552936 0.02179850 0.07124051 9.432063e-01
#> D_VARIANCE 0.649372950 0.01586510 40.93091422 0.000000e+00 ***
#> S_VARIANCE 1.280272325 0.03546419 36.10042407 2.233524e-285 ***
#> RHO -0.019190550 0.01810735 -1.05982079 2.892261e-01
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -2 log L: 6722.67
The deterministic adjustment model has price dynamics that are analogous to excess demand and estimates one extra parameter. The directional model estimates one parameter less as the model does not have enough equations to identify prices in both demand and supply equations. The estimated parameters are summarized as follows.
coef(da_fit)
da_coef <- names(da_coef)
coef_names <-
c(
sim_coef <-
alpha_d, beta_d0, beta_d, eta_d,
alpha_s, beta_s0, beta_s, eta_s,NA,
sigma_d, sigma_s,
rho_ds
)
function(fit) {
coef_tbl <- data.frame(names(coef(fit)), coef(fit))
dt <-names(dt) <- c("coef", substitute(fit))
dt
}
coef_tbl(da_fit) |>
comp <- dplyr::left_join(coef_tbl(bs_fit), by = "coef") |>
dplyr::left_join(coef_tbl(eq_reg), by = "coef") |>
dplyr::left_join(coef_tbl(eq_fit), by = "coef") |>
dplyr::mutate(sim = sim_coef) |>
dplyr::mutate(sim = sim_coef,
da_fit_err = abs(da_fit - sim),
bs_fit_err = abs(bs_fit - sim),
eq_fit_err = abs(eq_fit - sim))
comp#> coef da_fit bs_fit eq_reg eq_fit sim da_fit_err
#> 1 D_P -3.875716134 -3.5088088 -3.87655763 -3.8765719 -3.90 0.024283866
#> 2 D_CONST 28.891196214 29.1228978 28.89089359 28.8908986 28.90 0.008803786
#> 3 D_Xd1 2.105016163 2.0718884 2.10509733 2.1050283 2.10 0.005016163
#> 4 D_Xd2 -0.707967193 -0.7088276 -0.70777632 -0.7080066 -0.70 0.007967193
#> 5 D_X1 3.507453596 3.3652961 3.50747427 3.5074834 3.50 0.007453596
#> 6 D_X2 6.246539693 6.1435192 6.24655044 6.2465545 6.25 0.003460307
#> 7 S_P 2.842225125 2.0706215 2.84268683 2.8428079 2.80 0.042225125
#> 8 S_CONST 26.187074381 27.8541734 26.18623502 26.1861986 26.20 0.012925619
#> 9 S_Xs1 2.677786510 2.5828274 2.67765683 2.6776937 2.65 0.027786510
#> 10 S_X1 1.162670211 1.4475854 1.16278699 1.1627557 1.15 0.012670211
#> 11 S_X2 4.188174719 4.3986442 4.18828591 4.1882570 4.20 0.011825281
#> 12 P_DIFF 0.001552936 NA NA NA NA NA
#> 13 D_VARIANCE 0.649372950 0.6386261 0.64954289 0.6493577 0.80 0.150627050
#> 14 S_VARIANCE 1.280272325 1.1248997 1.28046017 1.2802231 1.10 0.180272325
#> 15 RHO -0.019190550 -0.4708618 -0.01915521 -0.0191747 0.00 0.019190550
#> bs_fit_err eq_fit_err
#> 1 0.391191222 0.023428107
#> 2 0.222897771 0.009101362
#> 3 0.028111597 0.005028251
#> 4 0.008827565 0.008006611
#> 5 0.134703926 0.007483361
#> 6 0.106480801 0.003445517
#> 7 0.729378471 0.042807896
#> 8 1.654173423 0.013801391
#> 9 0.067172625 0.027693701
#> 10 0.297585420 0.012755653
#> 11 0.198644190 0.011743025
#> 12 NA NA
#> 13 0.161373855 0.150642286
#> 14 0.024899730 0.180223091
#> 15 0.470861756 0.019174705
Since we have used simulated data, we can calculate the average absolute error of the parameter estimation for each of the models. The population values are unknown in practice, and this calculation is impossible.
colMeans(comp[, grep("err", colnames(comp))], na.rm = TRUE)
model_errors <-
model_errors#> da_fit_err bs_fit_err eq_fit_err
#> 0.03675054 0.32116445 0.03680964
Moreover, the average absolute error cannot provide an overall estimation assessment as the market models have different parameter spaces. To assess the overall model performance, one can instead use an information criterion.
c(da_fit, bs_fit, eq_fit)
fits <- sapply(fits, function(m) name(m))
model_names <- sapply(fits, nobs)
model_obs <- sapply(fits, AIC)
aic <- sapply(fits, function(m) attr(logLik(m), "df"))
df <- data.frame(Model = model_names, AIC = aic,
seltbl <-D.F = df, Obs. = model_obs,
Abs.Error = model_errors) |>
dplyr::arrange(AIC)
seltbl#> Model AIC D.F Obs. Abs.Error
#> eq_fit_err Equilibrium 6750.675 14 4000 0.03680964
#> da_fit_err Deterministic Adjustment 6752.670 15 4000 0.03675054
#> bs_fit_err Basic 8366.912 14 4000 0.32116445
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.