The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Additional R packages for this vignette:
This example reads in centered_ipd_twt
data that was
created in calculating_weights
vignette and uses
adrs_twt
dataset to run binary outcome analysis using the
maic_anchored
function by specifying
endpoint_type = "binary"
.
data(centered_ipd_twt)
data(adrs_twt)
centered_colnames <- c("AGE", "AGE_SQUARED", "SEX_MALE", "ECOG0", "SMOKE", "N_PR_THER_MEDIAN")
centered_colnames <- paste0(centered_colnames, "_CENTERED")
weighted_data <- estimate_weights(
data = centered_ipd_twt,
centered_colnames = centered_colnames
)
# get dummy binary IPD
pseudo_adrs <- get_pseudo_ipd_binary(
binary_agd = data.frame(
ARM = c("B", "C", "B", "C"),
RESPONSE = c("YES", "YES", "NO", "NO"),
COUNT = c(280, 120, 200, 200)
),
format = "stacked"
)
result <- maic_anchored(
weights_object = weighted_data,
ipd = adrs_twt,
pseudo_ipd = pseudo_adrs,
trt_ipd = "A",
trt_agd = "B",
trt_common = "C",
normalize_weight = FALSE,
endpoint_type = "binary",
endpoint_name = "Binary Endpoint",
eff_measure = "OR",
# binary specific args
binary_robust_cov_type = "HC3"
)
There are two summaries available in the result: descriptive and inferential. In the descriptive section, we have summaries of events.
## $summary
## trt_ind treatment type n events events_pct
## 1 C C IPD, before matching 500 338.0000 67.60000
## 2 A A IPD, before matching 500 390.0000 78.00000
## 3 C C IPD, after matching 500 131.2892 26.25784
## 4 A A IPD, after matching 500 142.8968 28.57935
## 5 C C AgD, external 320 120.0000 37.50000
## 6 B B AgD, external 480 280.0000 58.33333
In the inferential section, we have the fitted models stored
(i.e. logistic regression) and the results from the glm
models (i.e. odds ratios and CI).
## case OR LCL UCL pval
## 1 AC 1.6993007 1.2809976 2.2541985 2.354448e-04
## 2 adjusted_AC 1.3119021 0.8210000 2.0963303 2.562849e-01
## 3 BC 2.3333333 1.7458092 3.1185794 1.035032e-08
## 4 AB 0.7282717 0.4857575 1.0918611 1.248769e-01
## 5 adjusted_AB 0.5622438 0.3239933 0.9756933 4.061296e-02
Here are model and results before adjustment.
##
## Call: glm(formula = RESPONSE ~ ARM, family = glm_link, data = ipd)
##
## Coefficients:
## (Intercept) ARMA
## 0.7354 0.5302
##
## Degrees of Freedom: 999 Total (i.e. Null); 998 Residual
## Null Deviance: 1170
## Residual Deviance: 1157 AIC: 1161
## $est
## [1] 1.699301
##
## $se
## [1] 0.2488482
##
## $ci_l
## [1] 1.280998
##
## $ci_u
## [1] 2.254199
##
## $pval
## [1] 0.0002354448
## result pvalue
## "0.73[0.49; 1.09]" "0.125"
Here are model and results after adjustment.
##
## Call: glm(formula = RESPONSE ~ ARM, family = glm_link, data = ipd,
## weights = weights)
##
## Coefficients:
## (Intercept) ARMA
## 0.6559 0.2715
##
## Degrees of Freedom: 999 Total (i.e. Null); 998 Residual
## Null Deviance: 495.5
## Residual Deviance: 493.9 AIC: 454.5
## $est
## [1] 1.311902
##
## $se
## [1] 0.3275028
##
## $ci_l
## [1] 0.821
##
## $ci_u
## [1] 2.09633
##
## $pval
## [1] 0.2562849
## result pvalue
## "0.56[0.32; 0.98]" "0.041"
If bootstrap standard errors are preferred, we need to specify the
number of bootstrap iteration (n_boot_iteration
) in
estimate_weights
function and proceed fitting
maic_anchored
function. Then, the outputs include
bootstrapped CI. Different types of bootstrap CI can be found by using
parameter boot_ci_type
.
weighted_data2 <- estimate_weights(
data = centered_ipd_twt,
centered_colnames = centered_colnames,
n_boot_iteration = 100,
set_seed_boot = 1234
)
result_boot <- maic_anchored(
weights_object = weighted_data2,
ipd = adrs_twt,
pseudo_ipd = pseudo_adrs,
trt_ipd = "A",
trt_agd = "B",
trt_common = "C",
normalize_weight = FALSE,
endpoint_type = "binary",
endpoint_name = "Binary Endpoint",
eff_measure = "OR",
boot_ci_type = "perc",
# binary specific args
binary_robust_cov_type = "HC3"
)
result_boot$inferential$fit$boot_res_AB
## $est
## [1] 0.5622438
##
## $se
## [1] NA
##
## $ci_l
## [1] 0.3228615
##
## $ci_u
## [1] 0.9791133
##
## $pval
## [1] NA
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.