The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Demand classification

Loading the data

library(m5)
library(zeallot)
library(ggplot2)

m5_download('data')

c(sales_train,
  sales_test,
  sell_prices,
  calendar,
  weights) %<-% m5_get_raw_evaluation('data')

Preparing the data

m5_data  <-
    m5_prepare(sales_train, sales_test, calendar, sell_prices)
head(m5_data)
#>          item_id   dept_id  cat_id store_id state_id d value wm_yr_wk  weekday
#> 1: HOBBIES_1_001 HOBBIES_1 HOBBIES     CA_1       CA 1     0    11101 Saturday
#> 2: HOBBIES_1_002 HOBBIES_1 HOBBIES     CA_1       CA 1     0    11101 Saturday
#> 3: HOBBIES_1_003 HOBBIES_1 HOBBIES     CA_1       CA 1     0    11101 Saturday
#> 4: HOBBIES_1_004 HOBBIES_1 HOBBIES     CA_1       CA 1     0    11101 Saturday
#> 5: HOBBIES_1_005 HOBBIES_1 HOBBIES     CA_1       CA 1     0    11101 Saturday
#> 6: HOBBIES_1_006 HOBBIES_1 HOBBIES     CA_1       CA 1     0    11101 Saturday
#>    wday month year event_name_1 event_type_1 event_name_2 event_type_2 snap
#> 1:    1     1 2011         <NA>         <NA>         <NA>         <NA>    0
#> 2:    1     1 2011         <NA>         <NA>         <NA>         <NA>    0
#> 3:    1     1 2011         <NA>         <NA>         <NA>         <NA>    0
#> 4:    1     1 2011         <NA>         <NA>         <NA>         <NA>    0
#> 5:    1     1 2011         <NA>         <NA>         <NA>         <NA>    0
#> 6:    1     1 2011         <NA>         <NA>         <NA>         <NA>    0
#>    sell_price
#> 1:         NA
#> 2:         NA
#> 3:         NA
#> 4:         NA
#> 5:         NA
#> 6:         NA

Demand classification

m5_demand <- m5_demand_type(m5_data)

foods_demand <- 
  m5_demand[startsWith(as.character(m5_demand$item_id), "FOODS_1")]

plot <-
  ggplot(foods_demand) +
  geom_point(aes(log(cv2), log(adi),
                 item_id = item_id, col = demand_type)) +
  geom_hline(yintercept = log(1.32)) +
  geom_vline(xintercept = log(0.49)) +
  theme_minimal()

plot

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.