The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
lvmisc
is a package with miscellaneous R functions, including basic data computation/manipulation, easy plotting and tools for working with statistical models objects. You can learn more about the methods for working with models in vignette("working_with_models")
.
You can install the released version of lvmisc from CRAN with:
And the development version from GitHub with:
Some of what you can do with lvmisc.
library(lvmisc)
library(dplyr)
# Compute body mass index (BMI) and categorize it
starwars %>%
select(name, birth_year, mass, height) %>%
mutate(
BMI = bmi(mass, height / 100),
BMI_category = bmi_cat(BMI)
)
#> # A tibble: 87 × 6
#> name birth_year mass height BMI BMI_category
#> <chr> <dbl> <dbl> <int> <dbl> <fct>
#> 1 Luke Skywalker 19 77 172 26.0 Overweight
#> 2 C-3PO 112 75 167 26.9 Overweight
#> 3 R2-D2 33 32 96 34.7 Obesity class I
#> 4 Darth Vader 41.9 136 202 33.3 Obesity class I
#> 5 Leia Organa 19 49 150 21.8 Normal weight
#> 6 Owen Lars 52 120 178 37.9 Obesity class II
#> 7 Beru Whitesun lars 47 75 165 27.5 Overweight
#> 8 R5-D4 NA 32 97 34.0 Obesity class I
#> 9 Biggs Darklighter 24 84 183 25.1 Overweight
#> 10 Obi-Wan Kenobi 57 77 182 23.2 Normal weight
#> # … with 77 more rows
# Divide numerical variables in quantiles
divide_by_quantile(mtcars$wt, 4)
#> [1] 2 2 1 2 3 3 3 2 2 3 3 4 4 4 4 4 4 1 1 1 1 3 3 4 4 1 1 1 2 2 3 2
#> Levels: 1 2 3 4
# Center and scale variables by group
center_variable(iris$Petal.Width, by = iris$Species, scale = TRUE)
#> [1] -0.046 -0.046 -0.046 -0.046 -0.046 0.154 0.054 -0.046 -0.046 -0.146
#> [11] -0.046 -0.046 -0.146 -0.146 -0.046 0.154 0.154 0.054 0.054 0.054
#> [21] -0.046 0.154 -0.046 0.254 -0.046 -0.046 0.154 -0.046 -0.046 -0.046
#> [31] -0.046 0.154 -0.146 -0.046 -0.046 -0.046 -0.046 -0.146 -0.046 -0.046
#> [41] 0.054 0.054 -0.046 0.354 0.154 0.054 -0.046 -0.046 -0.046 -0.046
#> [51] 0.074 0.174 0.174 -0.026 0.174 -0.026 0.274 -0.326 -0.026 0.074
#> [61] -0.326 0.174 -0.326 0.074 -0.026 0.074 0.174 -0.326 0.174 -0.226
#> [71] 0.474 -0.026 0.174 -0.126 -0.026 0.074 0.074 0.374 0.174 -0.326
#> [81] -0.226 -0.326 -0.126 0.274 0.174 0.274 0.174 -0.026 -0.026 -0.026
#> [91] -0.126 0.074 -0.126 -0.326 -0.026 -0.126 -0.026 -0.026 -0.226 -0.026
#> [101] 0.474 -0.126 0.074 -0.226 0.174 0.074 -0.326 -0.226 -0.226 0.474
#> [111] -0.026 -0.126 0.074 -0.026 0.374 0.274 -0.226 0.174 0.274 -0.526
#> [121] 0.274 -0.026 -0.026 -0.226 0.074 -0.226 -0.226 -0.226 0.074 -0.426
#> [131] -0.126 -0.026 0.174 -0.526 -0.626 0.274 0.374 -0.226 -0.226 0.074
#> [141] 0.374 0.274 -0.126 0.274 0.474 0.274 -0.126 -0.026 0.274 -0.226
# Quick and easy plotting with {ggplot}
plot_scatter(mtcars, disp, mpg, color = factor(cyl))
# Work with statistical model objects
m <- lm(disp ~ mpg + hp + cyl + mpg:cyl, mtcars)
accuracy(m)
#> AIC BIC R2 R2_adj MAE MAPE RMSE
#> 1 344.64 353.43 0.87 0.85 34.9 15.73% 43.75
plot_model(m)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.