The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Multiple List Free Recall Example

Nicholas Maxwell, Erin Buchanan

2021-12-06

Libraries and Data

Please see manuscript for a long description of the following data. We will load the example data, and you can use the ? with the dataset name to learn more about the data. This example focuses on expanding the free recall options to include multiple or randomized lists by participant. You will need the data with a “list” or trial ID, as well as a matching answer key with the same ID.

library(lrd)
data("multi_data")
head(multi_data)
#>   Sub.ID       List.Type
#> 1      1   Cat_Recall_L1
#> 2      1 AdHoc_Recall_L2
#> 3      1 Unrel_Recall_L3
#> 4      2 Unrel_Recall_L4
#> 5      2   Cat_Recall_L5
#> 6      2 AdHoc_Recall_L6
#>                                                             Response
#> 1     rosemary onionsalt chilli powder ginger gloves bayleaves curry
#> 2       yo-yo top sphere orb spiral satellite bicycle gear hurricane
#> 3                          bishop desert whale index canteen lantern
#> 4            canoe dentist vapor solar saloon baby farm nugget valve
#> 5              cheese cloth jersey denim tweed burlap sheepskin lace
#> 6 door chair desk table clogs cabinet ship ruler shelf pencil stairs
#>   List.Number
#> 1           1
#> 2           2
#> 3           3
#> 4           4
#> 5           5
#> 6           6
#?multi_data

data("multi_answers")
head(multi_answers)
#>        List1     List2  List3   List4        List5         List6
#> 1     NUTMEG  WINDMILL MANUAL   SOLAR      CHIFFON          DOOR
#> 2    VANILLA   DREIDEL DESERT   CANOE       DENIUM        GAZEBO
#> 3      THYME SATELLITE HELMET BLOSSOM CHEESE CLOTH         RULER
#> 4      CUMIN    SPIRAL  CANDY DENTIST       BURLAP ROCKING HORSE
#> 5 ONION SALT   TORNADO  INDEX    MATH      WORSTED         HOUSE
#> 6     CHIVES  PINWHEEL ORPHAN   ACORN       ANGORA          BARN
#?multi_answers

library(ggplot2)
library(reshape)

Data Restructuring

The participant data should be in long format with each answer as one row of data. The participant ID will be repeated by participant, while the trial ID will be repeated by trial. You should use the repeated argument to indicate the information that denotes how the trials are repeated across participants. Note that in our example List.Type and List.Number contain the same information.

DF_long <- arrange_data(data = multi_data,
      responses = "Response",
      sep = " ",
      id = "Sub.ID",
      repeated = "List.Number")
head(DF_long)
#>    response position Sub.ID List.Number
#> 1  rosemary        1      1           1
#> 2 onionsalt        2      1           1
#> 3    chilli        3      1           1
#> 4    powder        4      1           1
#> 5    ginger        5      1           1
#> 6    gloves        6      1           1

Next, we will restructure the answer key to have one column for the answers and one column for the list ID. We will also relabel the columns (since reshape’s output is vague using variable and value). Last, we need to make sure the list ID column matches the column in our participant data.

multi_answers$position <- 1:nrow(multi_answers) #this column is only to reshape
answer_long <- melt(multi_answers,
                    measured = colnames(multi_answers),
                    id = "position")

#fix columns
colnames(answer_long) <- c("position", "List.ID", "Answer")

#match list id to participant data, which is only numbers
#list IDs can be characters or numbers 
answer_long$List.ID <- gsub(pattern = "List", 
                            replacement = "", 
                            x = answer_long$List.ID)

head(answer_long)
#>   position List.ID     Answer
#> 1        1       1     NUTMEG
#> 2        2       1    VANILLA
#> 3        3       1      THYME
#> 4        4       1      CUMIN
#> 5        5       1 ONION SALT
#> 6        6       1     CHIVES

Data Cleanup

Scoring in lrd is case sensitive, so we will use tolower() to lower case all correct answers and participant answers. In this particular example, all the spaces from the participant answers were removed, so we will also remove them from the answer key.

DF_long$response <- tolower(DF_long$response)
answer_long$Answer <- tolower(answer_long$Answer)
answer_long$Answer <- gsub(" ", "", answer_long$Answer)

head(DF_long)
#>    response position Sub.ID List.Number
#> 1  rosemary        1      1           1
#> 2 onionsalt        2      1           1
#> 3    chilli        3      1           1
#> 4    powder        4      1           1
#> 5    ginger        5      1           1
#> 6    gloves        6      1           1

head(answer_long)
#>   position List.ID    Answer
#> 1        1       1    nutmeg
#> 2        2       1   vanilla
#> 3        3       1     thyme
#> 4        4       1     cumin
#> 5        5       1 onionsalt
#> 6        6       1    chives

Score the Data

You should define the following:

free_output <- prop_correct_multiple(data = DF_long,
                                 responses = "response",
                                 key = answer_long$Answer,
                                 key.trial = answer_long$List.ID,
                                 id = "Sub.ID",
                                 id.trial = "List.Number", 
                                 cutoff = 1,
                                 flag = TRUE)


str(free_output)
#> List of 2
#>  $ DF_Scored     :'data.frame':  117 obs. of  6 variables:
#>   ..$ Responses  : chr [1:117] "basil" "basil" "bayleaves" "bayleaves" ...
#>   ..$ position   : chr [1:117] "8" "7" "7" "8" ...
#>   ..$ Sub.ID     : chr [1:117] "5" "3" "1" "3" ...
#>   ..$ List.Number: chr [1:117] "1" "1" "1" "1" ...
#>   ..$ Answer     : chr [1:117] "basil" "basil" "bayleaves" "bayleaves" ...
#>   ..$ Scored     : num [1:117] 1 1 1 1 1 1 1 0 1 1 ...
#>  $ DF_Participant:'data.frame':  14 obs. of  4 variables:
#>   ..$ Sub.ID             : chr [1:14] "1" "3" "5" "1" ...
#>   ..$ Proportion.Correct : num [1:14] 0.3 0.45 0.45 0.45 0.45 0.55 0.3 0.35 0.35 0.35 ...
#>   ..$ List.Number        : chr [1:14] "1" "1" "1" "2" ...
#>   ..$ Z.Score.Participant: num [1:14, 1] -1.155 0.577 0.577 -0.577 -0.577 ...
#>   .. ..- attr(*, "dimnames")=List of 2
#>   .. .. ..$ : NULL
#>   .. .. ..$ : NULL

Output

We can use DF_Scored to see the original dataframe with our new scored column - also to check if our answer key and participant answers matched up correctly! The DF_Participant can be used to view a participant level summary of the data. Last, if a grouping variable is used, we can use DF_Group to see that output.

#Overall
free_output$DF_Scored
#>       Responses position Sub.ID List.Number      Answer Scored
#> 1         basil        8      5           1       basil      1
#> 2         basil        7      3           1       basil      1
#> 3     bayleaves        7      1           1   bayleaves      1
#> 4     bayleaves        8      3           1   bayleaves      1
#> 5     bayleaves        3      5           1   bayleaves      1
#> 6    celeryseed        1      5           1  celeryseed      1
#> 7   chilipowder        6      3           1 chilipowder      1
#> 8        chilli        3      1           1        <NA>      0
#> 9         chyme        3      3           1       thyme      1
#> 10       cloves        9      3           1      cloves      1
#> 11        cumin        7      5           1       cumin      1
#> 12        curry        6      5           1       curry      1
#> 13        curry        8      1           1       curry      1
#> 14       ginger        5      1           1      ginger      1
#> 15       ginger        1      3           1      ginger      1
#> 16       gloves        6      1           1      cloves      1
#> 17  horseradish        4      5           1 horseradish      1
#> 18       nutmeg        2      3           1      nutmeg      1
#> 19    onionsalt        2      1           1   onionsalt      1
#> 20    onionsalt        2      5           1   onionsalt      1
#> 21    onionsalt        4      3           1   onionsalt      1
#> 22      oregano        9      5           1     oregano      1
#> 23       powder        4      1           1        <NA>      0
#> 24     rosemary        1      1           1    rosemary      1
#> 25     rosemary        5      3           1    rosemary      1
#> 26         sage       10      5           1        sage      1
#> 27         salt        5      5           1        <NA>      0
#> 28      bicycle        4      3           2     bicycle      1
#> 29      bicycle        7      1           2     bicycle      1
#> 30       bottle        1      3           2      bottle      1
#> 31         gear        8      1           2        gear      1
#> 32    hurricane        9      1           2   hurricane      1
#> 33    hurricane        9      5           2   hurricane      1
#> 34          orb        4      1           2         orb      1
#> 35          orb        5      5           2         orb      1
#> 36     pinwheel        1      5           2    pinwheel      1
#> 37    propeller        7      3           2   propeller      1
#> 38    propeller        2      5           2   propeller      1
#> 39       record        5      3           2      record      1
#> 40       record        7      5           2      record      1
#> 41     roulette        8      5           2    roulette      1
#> 42    satellite        6      1           2   satellite      1
#> 43    satellite        8      3           2   satellite      1
#> 44       sphere        3      5           2      sphere      1
#> 45       sphere        3      1           2      sphere      1
#> 46       spiral        3      3           2      spiral      1
#> 47       spiral        5      1           2      spiral      1
#> 48        spool        6      5           2       spool      1
#> 49          top        2      1           2         top      1
#> 50          top        4      5           2         top      1
#> 51          top        6      3           2         top      1
#> 52      tornado       10      5           2     tornado      1
#> 53      tornodo        9      3           2     tornado      1
#> 54     windmill       11      5           2    windmill      1
#> 55        yo-yo        1      1           2       yo-yo      1
#> 56        yo-yo        2      3           2       yo-yo      1
#> 57       anchor        6      3           3        <NA>      0
#> 58       bishop        1      1           3      bishop      1
#> 59        candy        8      3           3       candy      1
#> 60      canteen        4      3           3     canteen      1
#> 61      canteen        5      1           3     canteen      1
#> 62       desert        2      1           3      desert      1
#> 63       helmet        2      3           3      helmet      1
#> 64       hermet        1      3           3      helmet      1
#> 65        index        4      1           3       index      1
#> 66      lantern        6      1           3     lantern      1
#> 67       meteor        5      3           3      meteor      1
#> 68          wax        7      3           3         wax      1
#> 69        whale        3      1           3       whale      1
#> 70        whale        3      3           3       whale      1
#> 71         baby        6      2           4        <NA>      0
#> 72         cane        5      4           4        cane      1
#> 73        canoe        1      2           4       canoe      1
#> 74        canoe        6      4           4       canoe      1
#> 75      dentist        2      2           4     dentist      1
#> 76         farm        4      4           4        farm      1
#> 77         farm        7      2           4        farm      1
#> 78         funk        1      4           4        funk      1
#> 79         math        3      4           4        math      1
#> 80       nugget        8      2           4      nugget      1
#> 81       outlaw        2      4           4      outlaw      1
#> 82         pint        7      4           4        pint      1
#> 83       saloon        5      2           4        <NA>      0
#> 84        solar        4      2           4       solar      1
#> 85        valve        9      2           4       valve      1
#> 86        vapor        3      2           4       vapor      1
#> 87       bucket        7      4           5        <NA>      0
#> 88       burlap        6      2           5      burlap      1
#> 89       cheese        1      2           5        <NA>      0
#> 90        cloth        2      2           5        <NA>      0
#> 91      compost        1      4           5        <NA>      0
#> 92        denim        4      2           5      denium      1
#> 93       jersey        3      2           5      jersey      1
#> 94         lace        8      2           5        lace      1
#> 95         pick        6      4           5        <NA>      0
#> 96         plow        3      4           5        <NA>      0
#> 97       shears        5      4           5        <NA>      0
#> 98    sheepskin        7      2           5   sheepskin      1
#> 99        sieve        2      4           5        <NA>      0
#> 100       tweed        5      2           5       tweed      1
#> 101 wheelbarrow        4      4           5        <NA>      0
#> 102 baseballbat        1      4           6 baseballbat      1
#> 103     cabinet        6      2           6     cabinet      1
#> 104       chair        2      2           6       chair      1
#> 105       chair        2      4           6       chair      1
#> 106       clogs        5      2           6       clogs      1
#> 107        desk        3      2           6        desk      1
#> 108        desk        4      4           6        desk      1
#> 109        door        1      2           6        door      1
#> 110      pencil        5      4           6      pencil      1
#> 111      pencil       10      2           6      pencil      1
#> 112       ruler        8      2           6       ruler      1
#> 113       shelf        9      2           6       shelf      1
#> 114        ship        7      2           6        ship      1
#> 115      stairs       11      2           6      stairs      1
#> 116       table        4      2           6       table      1
#> 117       table        3      4           6       table      1

#Participant
free_output$DF_Participant
#>    Sub.ID Proportion.Correct List.Number Z.Score.Participant
#> 1       1               0.30           1          -1.1547005
#> 2       3               0.45           1           0.5773503
#> 3       5               0.45           1           0.5773503
#> 4       1               0.45           2          -0.5773503
#> 5       3               0.45           2          -0.5773503
#> 6       5               0.55           2           1.1547005
#> 7       1               0.30           3          -0.7071068
#> 8       3               0.35           3           0.7071068
#> 9       2               0.35           4                 NaN
#> 10      4               0.35           4                 NaN
#> 11      2               0.30           5           0.7071068
#> 12      4               0.00           5          -0.7071068
#> 13      2               0.55           6           0.7071068
#> 14      4               0.25           6          -0.7071068

#Group
#free_output$DF_Group

Other Possible Calculations

Serial Position

This function prepares the data for a serial position curve analysis or visualization. Please note, it assumes you are using the output from above, but any output with these columns would work fine. The arguments are roughly the same as the overall scoring function. We’ve also included some ggplot2 code as an example to help show how you might use our output for plotting. List.ID indicates the list identifier for examining differences in responses between lists.

serial_output <- serial_position_multiple(data = free_output$DF_Scored,
                                position = "position", 
                                answer = "Answer", 
                                key = answer_long$Answer,
                                key.trial = answer_long$List.ID,
                                scored = "Scored",
                                id.trial = "List.Number")

head(serial_output)
#>   Tested.Position Freq Proportion.Correct        SE List.ID
#> 1               1    0          0.0000000 0.0000000       1
#> 2               3    0          0.0000000 0.0000000       1
#> 3               4    0          0.0000000 0.0000000       1
#> 4               5    1          0.3333333 0.2721655       1
#> 5               7    1          0.3333333 0.2721655       1
#> 6               8    0          0.0000000 0.0000000       1

ggplot(serial_output, aes(Tested.Position, Proportion.Correct, color = List.ID)) +
  geom_line() +
  geom_point() +
  xlab("Tested Position") +
  ylab("Probability of First Response") +
  theme_bw() 

Conditional Response Probability

Conditional response probability is the likelihood of answers given the current answer set. Therefore, the column participant_lags represents the lag between the written and tested position (e.g., chair was listed second, which represents a lag of -6 from spot number 8 on the answer key list). The column Freq represents the frequency of the lags between listed and shown position, while the Possible.Freq column indicates the number of times that frequency could occur given each answer listed (e.g., given the current answer, a tally of the possible lags that could still occur). The CRP column calculates the conditional response probability, or the frequency column divided by the possible frequencies of lags.

crp_output <- crp_multiple(data = free_output$DF_Scored,
                  key = answer_long$Answer,
                  position = "position",
                  scored = "Scored",
                  answer = "Answer",
                  id = "Sub.ID", 
                  key.trial = answer_long$List.ID,
                  id.trial = "List.Number")

head(crp_output)
#>   Sub.ID participant_lags Freq Possible.Freq List.Number CRP
#> 1      1              -19    0             0           1 0.0
#> 2      1              -18    0             0           1 0.0
#> 3      1              -17    0             0           1 0.0
#> 4      1              -16    0             0           1 0.0
#> 5      1              -15    1             2           1 0.5
#> 6      1              -14    0             0           1 0.0

crp_output$participant_lags <- as.numeric(as.character(crp_output$participant_lags))

ggplot(crp_output, aes(participant_lags, CRP, color = List.Number)) +
  geom_line() +
  geom_point() +
  xlab("Lag Distance") +
  ylab("Conditional Response Probability") +
  theme_bw()

Probability of First Response

Participant answers are first filtered for their first response, and these are matched to the original order on the answer key list (Tested.Position). Then the frequency (Freq) of each of those answers is tallied and divided by the number of participants overall or by group if the group.by argument is included (pfr).

pfr_output <- pfr_multiple(data = free_output$DF_Scored,
                  key = answer_long$Answer,
                  position = "position",
                  scored = "Scored",
                  answer = "Answer",
                  id = "Sub.ID",
                  key.trial = answer_long$List.ID,
                  id.trial = "List.Number")

head(pfr_output)
#>   Tested.Position Freq       pfr List.ID
#> 1              12    1 0.3333333       1
#> 2              14    1 0.3333333       1
#> 3              20    1 0.3333333       1
#> 4               6    1 0.3333333       2
#> 5              13    1 0.3333333       2
#> 6              14    1 0.3333333       2

pfr_output$Tested.Position <- as.numeric(as.character(pfr_output$Tested.Position))

ggplot(pfr_output, aes(Tested.Position, pfr, color = List.ID)) +
  geom_line() +
  geom_point() +
  xlab("Tested Position") +
  ylab("Probability of First Response") +
  theme_bw()

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.