The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

LOL Simulations

Eric Bridgeford

2020-06-25

require(lolR)
require(ggplot2)
require(MASS)
n <- 1000
d <- 15
plot_sim <- function(X, Y, name, d1=1, d2=2) {
  data <- data.frame(x1=X[,d1], x2=X[,d2], y=Y)
  data$y <- factor(data$y)
  ggplot(data, aes(x=x1, y=x2, color=y)) +
    geom_point() +
    xlab("x1") +
    ylab("x2") +
    ggtitle(name)
}

Below, we visualize the different simulation settings with n=400 in d=50 dimensions:

Trunk, 2 Class

testdat <- lol.sims.rtrunk(n, d, b=20)
X <- testdat$X
Y <- testdat$Y
print(plot_sim(X, Y, "Trunk, 2 Class"))

Rotated Trunk, 2 Class, non-equal priors

In this simulation, we show the trunk, estimate a rotation matrix to apply to the mean and covariances, and use a non-equal prior with more class 1 than class 2.

testdat <- lol.sims.rtrunk(n, d, rotate=TRUE, priors=c(0.8, 0.2), b=20)
X <- testdat$X
Y <- testdat$Y
print(plot_sim(X, Y, "Rotated Trunk, 2 Class, non-equal priors"))

Trunk, 3 Class

testdat <- lol.sims.rtrunk(n, d, b=20, K=3)
X <- testdat$X
Y <- testdat$Y
print(plot_sim(X, Y, "Trunk, 3 Class"))

Mean Difference

testdat <- lol.sims.mean_diff(n, d)
X <- testdat$X
Y <- testdat$Y
print(plot_sim(X, Y, "Mean Difference 2 Class"))

Toeplitz

testdat <- lol.sims.toep(n, d)
X <- testdat$X
Y <- testdat$Y
print(plot_sim(X, Y, "Toeplitz"))

QD- Toeplitz

testdat <- lol.sims.qdtoep(n, d)
X <- testdat$X
Y <- testdat$Y
print(plot_sim(X, Y, "QD-Toeplitz"))

XOR

testdat <- lol.sims.xor2(n, d)
X <- testdat$X
Y <- testdat$Y
print(plot_sim(X, Y, "XOR"))

Cigar

testdat <- lol.sims.cigar(n, d)
X <- testdat$X
Y <- testdat$Y
print(plot_sim(X, Y, "Cigar"))

Fat Tails

testdat <- lol.sims.fat_tails(n, d)
X <- testdat$X
Y <- testdat$Y
print(plot_sim(X, Y, "Fat Tails"))

Cross

testdat <- lol.sims.cross(n, d, a=4, b=.25)
X <- testdat$X
Y <- testdat$Y
print(plot_sim(X, Y, "Cross", d1=7, d2=8))

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.