The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
require(lolR)
require(ggplot2)
require(MASS)
n=400
d=2
In this notebook, we will investigate how to use the nearest centroid classifier.
We simulate 400
examples of 30
dimensional points:
testdat <- lol.sims.mean_diff(n, d)
X <- testdat$X
Y <- testdat$Y
data <- data.frame(x1=X[,1], x2=X[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
geom_point() +
xlab("x1") +
ylab("x2") +
ggtitle("Simulated Data") +
xlim(-4, 6) +
ylim(-4, 4)
We estimate the centers with the nearestCentroid
classifier:
classifier <- lol.classify.nearestCentroid(X, Y)
data <- cbind(data, data.frame(size=1))
data <- rbind(data, data.frame(x1=classifier$centroids[,1], x2=classifier$centroids[,2], y="center", size=5))
ggplot(data, aes(x=x1, y=x2, color=y, size=size)) +
geom_point() +
xlab("x1") +
ylab("x2") +
ggtitle("Data with estimated Centers") +
guides(size=FALSE) +
xlim(-4, 6) +
ylim(-4, 4)
Yhat <- predict(classifier, X)
data$y[1:(length(data$y) - 2)] <- Yhat
ggplot(data, aes(x=x1, y=x2, color=y, size=size)) +
geom_point() +
xlab("x1") +
ylab("x2") +
ggtitle("Data with Predictions") +
guides(size=FALSE) +
xlim(-4, 6) +
ylim(-4, 4)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.