The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Linear Optimal Low-Rank Projection (LOL)

Eric Bridgeford

2020-06-25

require(lolR)
require(ggplot2)
require(MASS)
n=400
d=30
r=3

Data for this notebook will be n=400 examples of d=30 dimensions.

LOL

Stacked Cigar Simulation

We first visualize the first 2 dimensions:

testdat <- lol.sims.cigar(n, d)
X <- testdat$X
Y <- testdat$Y

data <- data.frame(x1=X[,1], x2=X[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
  geom_point() +
  xlab("x1") +
  ylab("x2") +
  ggtitle("Simulated Data")

Projecting with LOL to 3 dimensions and visualizing the first 2:

result <- lol.project.lol(X, Y, r)

data <- data.frame(x1=result$Xr[,1], x2=result$Xr[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
  geom_point() +
  xlab("x1") +
  ylab("x2") +
  ggtitle("Projected Data using LOL")

Projecting with LDA to K-1=1 dimensions:

liney <- MASS::lda(result$Xr, Y)
result <- predict(liney, result$Xr)
lhat <- 1 - sum(result$class == Y)/length(Y)

data <- data.frame(x1=result$x[,1], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, fill=y)) +
  geom_density(adjust=1.5, alpha=0.6) +
  xlab("x1") +
  ylab("Density") +
  ggtitle(sprintf("LOL, LDA, L = %.2f", lhat))

Trunk Simulation

We visualize the first 2 dimensions:

testdat <- lol.sims.rtrunk(n, d)
X <- testdat$X
Y <- testdat$Y

data <- data.frame(x1=X[,1], x2=X[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
  geom_point() +
  xlab("x1") +
  ylab("x2") +
  ggtitle("Simulated Data")

Projecting with LOL to 3 dimensions and visualizing the first 2:

result <- lol.project.lol(X, Y, r)

data <- data.frame(x1=result$Xr[,1], x2=result$Xr[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
  geom_point() +
  xlab("x1") +
  ylab("x2") +
  ggtitle("Projected Data using LOL")

Projecting with LDA to K-1=1 dimensions:

liney <- MASS::lda(result$Xr, Y)
result <- predict(liney, result$Xr)
lhat <- 1 - sum(result$class == Y)/length(Y)

data <- data.frame(x1=result$x[,1], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, fill=y)) +
  geom_density(adjust=1.5, alpha=0.6) +
  xlab("x1") +
  ylab("Density") +
  ggtitle(sprintf("LOL, LDA, L = %.2f", lhat))

Rotated Trunk Simulation

We visualize the first 2 dimensions:

testdat <- lol.sims.rtrunk(n, d, rotate=TRUE)
X <- testdat$X
Y <- testdat$Y

data <- data.frame(x1=X[,1], x2=X[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
  geom_point() +
  xlab("x1") +
  ylab("x2") +
  ggtitle("Simulated Data")

Projecting with LOL to 3 dimensions and visualizing the first 2:

result <- lol.project.lol(X, Y, r)

data <- data.frame(x1=result$Xr[,1], x2=result$Xr[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
  geom_point() +
  xlab("x1") +
  ylab("x2") +
  ggtitle("Projected Data using LOL")

Projecting with LDA to K-1=1 dimensions:

liney <- MASS::lda(result$Xr, Y)
result <- predict(liney, result$Xr)
lhat <- 1 - sum(result$class == Y)/length(Y)

data <- data.frame(x1=result$x[,1], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, fill=y)) +
  geom_density(adjust=1.5, alpha=0.6) +
  xlab("x1") +
  ylab("Density") +
  ggtitle(sprintf("LOL, LDA, L = %.2f", lhat))

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.