The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
If you already use Ollama and have downloaded GGUF models, localLLM can discover and load them directly without re-downloading. This saves disk space and bandwidth by reusing models you’ve already installed.
Use list_ollama_models() to see all GGUF models managed
by Ollama:
#> name size path
#> 1 llama3.2 2.0 GB ~/.ollama/models/blobs/sha256-6340dc32...
#> 2 deepseek-r1:8b 4.9 GB ~/.ollama/models/blobs/sha256-8a2b7c9e...
#> 3 gemma2:9b 5.4 GB ~/.ollama/models/blobs/sha256-9f8a7b6c...
You can reference Ollama models in several ways:
The model_path parameter triggers Ollama model discovery
when it matches specific patterns:
| Input | Triggers Ollama | Description |
|---|---|---|
"ollama" |
Yes | Exact match (case-insensitive) |
"Ollama" |
Yes | Case-insensitive |
" ollama " |
Yes | Whitespace is trimmed |
"ollama:llama3" |
Yes | Starts with ollama: |
"ollama:deepseek-r1:8b" |
Yes | Full model name with tag |
"ollama:6340dc32" |
Yes | SHA256 prefix (8+ chars recommended) |
"myollama" |
No | Not exact match, doesn’t start with ollama: |
"ollama.gguf" |
No | Treated as filename, not Ollama reference |
# Load by exact name
model <- model_load("ollama:llama3.2")
# Create context and generate
ctx <- context_create(model, n_ctx = 4096)
messages <- list(
list(role = "user", content = "What is machine learning?")
)
prompt <- apply_chat_template(model, messages)
response <- generate(ctx, prompt, max_tokens = 200)
cat(response)Ollama stores models in a specific location:
~/.ollama/models/~/.ollama/models/%USERPROFILE%\.ollama\models\The actual GGUF files are stored in:
~/.ollama/models/blobs/sha256-<hash>
localLLM reads the Ollama manifest files to map model names to their blob locations.
#> Error: No Ollama model found matching 'nonexistent'.
#> Available models: llama3.2, deepseek-r1:8b, gemma2:9b
Solution: Check available models with
list_ollama_models() and verify the name.
#> Warning: Ollama directory not found at ~/.ollama/models
#> data frame with 0 columns and 0 rows
Solution: Install Ollama from ollama.com and pull some models:
list_ollama_models()
shows what’s availablelibrary(localLLM)
# 1. Check what's available
available <- list_ollama_models()
print(available)
# 2. Load a model
model <- model_load("ollama:llama3.2", n_gpu_layers = 999)
# 3. Create context
ctx <- context_create(model, n_ctx = 4096)
# 4. Generate text
messages <- list(
list(role = "system", content = "You are a helpful assistant."),
list(role = "user", content = "Write a haiku about coding.")
)
prompt <- apply_chat_template(model, messages)
response <- generate(ctx, prompt, max_tokens = 50, temperature = 0.7)
cat(response)#> Lines of code flow
#> Logic builds like morning dew
#> Bugs hide, then we debug
| Function | Purpose |
|---|---|
list_ollama_models() |
Discover available Ollama models |
model_load("ollama:name") |
Load specific Ollama model |
model_load("ollama") |
Interactive model selection |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.