The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

lmmpar

Travis-CI Build Status CRAN_Status_Badge

The goal of lmmpar is to …

Installation

You can install lmmpar from github with:

# install.packages("devtools")
devtools::install_github("fulyagokalp/lmmpar")

Example

This is a basic example which shows you how to solve a common problem:

# Set up fake data
n <- 10000  # number of subjects
m <- 4      # number of repeats
N <- n * m  # true size of data
p <- 50     # number of betas
q <- 2      # width of random effects

# Initial parameters
# beta has a 1 for the first value.  all other values are ~N(10, 1)
beta <- rbind(1, matrix(rnorm(p, 10), p, 1))
R <- diag(m)
D <- matrix(c(16, 0, 0, 0.025), nrow = q)
sigma <- 1

# Set up data
subject <- rep(1:n, each = m)
repeats <- rep(1:m, n)

subj_x <- lapply(1:n, function(i) cbind(1, matrix(rnorm(m * p), nrow = m)))
X <- do.call(rbind, subj_x)
Z <- X[, 1:q]
subj_beta <- lapply(1:n, function(i) mnormt::rmnorm(1, rep(0, q), D))
subj_err <- lapply(1:n, function(i) mnormt::rmnorm(1, rep(0, m), sigma * R))

# create a known response
subj_y <- lapply(
   seq_len(n),
   function(i) {
     (subj_x[[i]] %*% beta) +
       (subj_x[[i]][, 1:q] %*% subj_beta[[i]]) +
       subj_err[[i]]
   }
)
Y <- do.call(rbind, subj_y)

# run the algorithm in parallel to recover the known betas
ans <- lmmpar(
   Y,
   X,
   Z,
   subject,
   beta = beta,
   R = R,
   D = D,
   cores = 4,
   sigma = sigma,
   verbose = TRUE
)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.