The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Fast AUC Computation
Version: 0.1.3
Maintainer: Christos Adam <econp266@econ.soc.uoc.gr>
Description: Fast calculation of Area Under Curve (AUC) metric of a Receiver Operating Characteristic (ROC) curve, using the algorithm of Fawcett (2006) <doi:10.1016/j.patrec.2005.10.010>. Therefore it is appropriate for large-scale AUC metric calculations.
License: GPL-3
Imports: Rcpp (≥ 1.0.13), RcppParallel (≥ 5.1.9)
LinkingTo: Rcpp, RcppArmadillo, RcppParallel
Encoding: UTF-8
SystemRequirements: GNU make
Suggests: Rfast, Rfast2, knitr, rmarkdown, testthat (≥ 3.0.0)
VignetteBuilder: knitr, rmarkdown
Config/testthat/edition: 3
URL: https://github.com/cadam00/lightAUC, https://cadam00.github.io/lightAUC/
BugReports: https://github.com/cadam00/lightAUC/issues
NeedsCompilation: yes
Packaged: 2025-05-01 20:13:17 UTC; Administrator
Author: Christos Adam ORCID iD [aut, cre]
Repository: CRAN
Date/Publication: 2025-05-01 20:30:02 UTC

Fast AUC computation

Description

Fast and memory efficient AUC computation.

Usage

lightAUC(probs, actuals, parallel = FALSE, cores = 2)

Arguments

probs

numeric vector containing probability from the model, where closer to 1 is for the positive class and closer to 0 is for the negative class.

actuals

integer, numeric or logical vector with the actual data, where is 1 for the positive class and 0 for the negative class.

parallel

logical indicating if multithreading should be used. The default is no multithreading (parallel = FALSE).

cores

integer indicating the number of threads to be used when parallel = TRUE. The default is cores=2, meaning that 2 cores are used.

Details

Binary AUC computation according to Fawcett (2006) doi:10.1016/j.patrec.2005.10.010.

Value

numeric value representing the AUC metric.

References

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. doi:10.1016/j.patrec.2005.10.010

Examples

probs   <- c(1, 0.4, 0.8)
actuals <- c(0, 0, 1)
lightAUC(probs, actuals)

probs   <- c(1, 0.4, 0.8)
actuals <- c(FALSE, FALSE, TRUE)
lightAUC(probs, actuals)

probs   <- c(1, 0.4, 0.8)
actuals <- c(0, 0, 1)
lightAUC(probs, actuals, parallel = TRUE, cores = 2L)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.