The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
For notation details, see (Bowers et al. 1997).
Using the well-known relation \({}_{s+u}p_y={}_up_{y+s} \times {}_sp_y\), we compute \({}_tp_{x}\) as for all \(x,t\in\mathbb R_+\) \[ {}_tp_{x} = \frac{{}_{t+\epsilon_x}p_{\lfloor x\rfloor} }{{}_{\epsilon_x}p_{\lfloor x\rfloor}} = \frac{{}_{\lfloor u\rfloor}p_{\lfloor x\rfloor} \times {}_{\epsilon_u}p_{\lfloor x\rfloor+\lfloor u\rfloor} }{{}_{\epsilon_x}p_{\lfloor x\rfloor}} \] with \(\epsilon_x=x - \lfloor x\rfloor\), \(u=t+\epsilon_x\) and \(\epsilon_u=u-\lfloor u\rfloor\).
Then we estimate \({}_np_{m}\) as for all \(n,m\in\mathbb N\) \[ {}_np_{m} = \frac{l_{n+m}}{l_m}. \]
We interpolate fractional age probabilities by three classical assumptions for all \(y \in [0,1), m\in\mathbb N\) \[ {}_{y}p_{m} = \left\{ \begin{array}{ll} 1 - y (1-p_{m}) & \text{if uniform distribution} \\ (p_{m})^y & \text{if constant force} \\ \frac{p_{m}}{1-(1-y)(1-p_{m})} & \text{if hyperbolic distribution} \\ \end{array} \right. \]
library(lifecontingencies)
data("soa08Act")
pXt <- Vectorize(lifecontingencies:::pxtold, "x")
pxT <- Vectorize(lifecontingencies:::pxtold, "t")
pxtvect <- pxt
z <- 1:6/3
#non integer time
cbind(t=z, pxtvect(soa08Act, x=100, t=z, fractional = "lin"), pxT(object=soa08Act, x=100, t=z, fractional = "lin"))
#> t
#> [1,] 0.3333333 0.8639604 0.8639604
#> [2,] 0.6666667 0.7279208 0.7279208
#> [3,] 1.0000000 0.5918812 0.5918812
#> [4,] 1.3333333 0.5056079 0.5056079
#> [5,] 1.6666667 0.4193345 0.4193345
#> [6,] 2.0000000 0.3330612 0.3330612
cbind(t=z, pxtvect(soa08Act, x=100, t=z, fractional = "hyp"), pxT(object=soa08Act, x=100, t=z, fractional = "hyp"))
#> t
#> [1,] 0.3333333 0.8131121 0.8131121
#> [2,] 0.6666667 0.6850791 0.6850791
#> [3,] 1.0000000 0.5918812 0.5918812
#> [4,] 1.3333333 0.4701083 0.4701083
#> [5,] 1.6666667 0.3898924 0.3898924
#> [6,] 2.0000000 0.3330612 0.3330612
cbind(t=z, pxtvect(soa08Act, x=100, t=z, fractional = "exp"), pxT(object=soa08Act, x=100, t=z, fractional = "exp"))
#> t
#> [1,] 0.3333333 0.8396111 0.8396111
#> [2,] 0.6666667 0.7049468 0.7049468
#> [3,] 1.0000000 0.5918812 0.5918812
#> [4,] 1.3333333 0.4886498 0.4886498
#> [5,] 1.6666667 0.4034232 0.4034232
#> [6,] 2.0000000 0.3330612 0.3330612
x <- 50+0:6/6
#non-integer age
cbind(x=x, pxtvect(soa08Act, x=x, t=1, fractional = "lin"), pXt(object=soa08Act, x=x, t=1, fractional = "lin"))
#> x
#> [1,] 50.00000 0.9940801 0.9940801
#> [2,] 50.16667 0.9939968 0.9939968
#> [3,] 50.33333 0.9939134 0.9939134
#> [4,] 50.50000 0.9938298 0.9938298
#> [5,] 50.66667 0.9937460 0.9937460
#> [6,] 50.83333 0.9936620 0.9936620
#> [7,] 51.00000 0.9935779 0.9935779
cbind(x=x, pxtvect(soa08Act, x=x, t=1, fractional = "hyp"), pXt(object=soa08Act, x=x, t=1, fractional = "hyp"))
#> x
#> [1,] 50.00000 0.9940801 0.9940801
#> [2,] 50.16667 0.9939960 0.9939960
#> [3,] 50.33333 0.9939120 0.9939120
#> [4,] 50.50000 0.9938282 0.9938282
#> [5,] 50.66667 0.9937446 0.9937446
#> [6,] 50.83333 0.9936612 0.9936612
#> [7,] 51.00000 0.9935779 0.9935779
cbind(x=x, pxtvect(soa08Act, x=x, t=1, fractional = "exp"), pXt(object=soa08Act, x=x, t=1, fractional = "exp"))
#> x
#> [1,] 50.00000 0.9940801 0.9940801
#> [2,] 50.16667 0.9939964 0.9939964
#> [3,] 50.33333 0.9939127 0.9939127
#> [4,] 50.50000 0.9938290 0.9938290
#> [5,] 50.66667 0.9937453 0.9937453
#> [6,] 50.83333 0.9936616 0.9936616
#> [7,] 51.00000 0.9935779 0.9935779
x <- 135:145
#high-age
cbind(x=x, pxtvect(soa08Act, x=x, t=1), pXt(object=soa08Act, x=x, t=1))
#> x
#> [1,] 135 1.932519e-06 1.932519e-06
#> [2,] 136 5.431077e-07 5.431077e-07
#> [3,] 137 1.350422e-07 1.350422e-07
#> [4,] 138 2.935883e-08 2.935883e-08
#> [5,] 139 5.508989e-09 5.508989e-09
#> [6,] 140 0.000000e+00 0.000000e+00
#> [7,] 141 0.000000e+00 0.000000e+00
#> [8,] 142 0.000000e+00 0.000000e+00
#> [9,] 143 0.000000e+00 0.000000e+00
#> [10,] 144 0.000000e+00 0.000000e+00
#> [11,] 145 0.000000e+00 0.000000e+00
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.