The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
To attach the package in R studio
To find the best combination of normalization and imputation method for the dataset
PCV values result
yeast$`PCV Result`
#> Combinations PCV_mean_Group1 PCV_mean_Group2 PCV_median_Group1
#> 1 vsn_knn 0.01563742 0.01671153 0.009085376
#> 2 vsn_lls 0.01557428 0.01691132 0.008789145
#> 3 vsn_svd 0.02029744 0.02096730 0.009800237
#> 4 loess_knn 0.01548619 0.01655803 0.008986443
#> 5 loess_lls 0.01541044 0.01670319 0.008791060
#> 6 loess_svd 0.02009301 0.02073306 0.009817465
#> 7 rlr_knn 0.01531832 0.01635141 0.008656845
#> 8 rlr_lls 0.01526014 0.01654432 0.008350407
#> 9 rlr_svd 0.02000539 0.02062160 0.009589709
#> PCV_median_Group2 PCV_sd_Group1 PCV_sd_Group2 Overall_PCV_mean
#> 1 0.009162047 0.02188211 0.02789401 0.01609943
#> 2 0.008873765 0.02325404 0.03118426 0.01613564
#> 3 0.009810854 0.02674776 0.03040037 0.02057308
#> 4 0.009064154 0.02183528 0.02788257 0.01594661
#> 5 0.008825419 0.02302518 0.03069866 0.01595420
#> 6 0.009819619 0.02638870 0.02991608 0.02035557
#> 7 0.008705225 0.02188365 0.02779022 0.01576120
#> 8 0.008379560 0.02322101 0.03097194 0.01579786
#> 9 0.009557701 0.02672238 0.03024527 0.02025546
#> Overall_PCV_median Overall_PCV_sd
#> 1 0.009121854 0.02435171
#> 2 0.008841480 0.02642796
#> 3 0.009759333 0.02817807
#> 4 0.009029431 0.02431686
#> 5 0.008796762 0.02610429
#> 6 0.009867787 0.02776905
#> 7 0.008692614 0.02430915
#> 8 0.008368643 0.02632414
#> 9 0.009589021 0.02809690
PEV values result
yeast$`PEV Result`
#> Combinations PEV_mean_Group1 PEV_mean_Group2 PEV_median_Group1
#> 1 vsn_knn 0.1750346 0.4416583 0.01844883
#> 2 vsn_lls 0.1605545 0.3526731 0.01771234
#> 3 vsn_svd 0.2332971 1.5140417 0.01844883
#> 4 loess_knn 0.1756443 0.4226978 0.01768420
#> 5 loess_lls 0.1607610 0.3510016 0.01731269
#> 6 loess_svd 0.2323864 1.4532736 0.01768420
#> 7 rlr_knn 0.1753304 0.4426088 0.01867395
#> 8 rlr_lls 0.1607318 0.3615946 0.01817239
#> 9 rlr_svd 0.2333951 1.4919739 0.01896238
#> PEV_median_Group2 PEV_sd_Group1 PEV_sd_Group2 Overall_PEV_mean
#> 1 0.06687189 0.8601269 1.658083 2.508121
#> 2 0.05193112 0.7656055 1.322830 2.774895
#> 3 0.08735927 1.7173591 4.468394 3.405475
#> 4 0.06251937 0.8708275 1.619565 2.493276
#> 5 0.05096026 0.7697870 1.341117 2.718944
#> 6 0.08046607 1.7147858 4.290605 3.326045
#> 7 0.06143150 0.8653132 1.641726 2.473773
#> 8 0.04608619 0.7694183 1.335029 2.732593
#> 9 0.08425770 1.7178645 4.391970 3.359488
#> Overall_PEV_median Overall_PEV_sd
#> 1 0.2538019 12.26901
#> 2 0.2390899 14.60724
#> 3 0.3108805 12.40196
#> 4 0.2548058 12.27346
#> 5 0.2391203 14.27067
#> 6 0.3027093 12.09070
#> 7 0.2331567 12.13988
#> 8 0.2153352 14.40870
#> 9 0.2862557 12.22056
PMAD values result
yeast$`PMAD Result`
#> Combinations PMAD_mean_Group1 PMAD_mean_Group2 PMAD_median_Group1
#> 1 vsn_knn 0.1062125 0.1788447 0.06149434
#> 2 vsn_lls 0.1029024 0.1643297 0.06134860
#> 3 vsn_svd 0.1060137 0.2028000 0.06149434
#> 4 loess_knn 0.1063133 0.1703496 0.05911223
#> 5 loess_lls 0.1028750 0.1593060 0.05907470
#> 6 loess_svd 0.1061947 0.1999361 0.05911223
#> 7 rlr_knn 0.1069145 0.1716799 0.06077546
#> 8 rlr_lls 0.1034537 0.1565315 0.06060190
#> 9 rlr_svd 0.1067671 0.1972949 0.06077546
#> PMAD_median_Group2 PMAD_sd_Group1 PMAD_sd_Group2 Overall_PMAD_mean
#> 1 0.10204409 0.1572550 0.2600514 0.3275212
#> 2 0.09250152 0.1333701 0.2747744 0.3457268
#> 3 0.10175997 0.1589957 0.3626523 0.2995501
#> 4 0.09948055 0.1593045 0.2502206 0.3262883
#> 5 0.08558012 0.1332326 0.2785570 0.3416470
#> 6 0.10034390 0.1610855 0.3597532 0.2954359
#> 7 0.10079434 0.1577010 0.2555111 0.3125215
#> 8 0.08443967 0.1328456 0.2722582 0.3307206
#> 9 0.09660103 0.1594251 0.3626211 0.2840227
#> Overall_PMAD_median Overall_PMAD_sd
#> 1 0.1744034 0.6779926
#> 2 0.1702934 0.8159244
#> 3 0.1762055 0.4355489
#> 4 0.1723007 0.6894671
#> 5 0.1693064 0.8061786
#> 6 0.1735256 0.4326712
#> 7 0.1577165 0.6793344
#> 8 0.1531687 0.8108007
#> 9 0.1585464 0.4336766
Best combinations
yeast$`Best combinations`
#> PCV_best_combination PEV_best_combination PMAD_best_combination
#> 1 rlr_knn, rlr_lls vsn_lls rlr_lls
1. By boxplot
2. By density plot
3. By correlation heatmap
4. By MDS plot
5. By QQ-plot
To Calculate the top-table values
To visualize the different kinds of differentially abundant proteins, such as up-regulated, down-regulated, significant and non-significant proteins
By MA plot
By volcano plot
Both of the above plots give same result.
To obtain the overall differentially abundant proteins result
To find the up-regulated proteins
To find the down-regulated proteins
To find the other significant proteins
To find the non-significant proteins
The overall workflow of working with the ‘lfproQC’ package
Session Information
sessionInfo()
#> R version 4.4.1 (2024-06-14 ucrt)
#> Platform: x86_64-w64-mingw32/x64
#> Running under: Windows 11 x64 (build 22621)
#>
#> Matrix products: default
#>
#>
#> locale:
#> [1] LC_COLLATE=C LC_CTYPE=English_India.utf8
#> [3] LC_MONETARY=English_India.utf8 LC_NUMERIC=C
#> [5] LC_TIME=English_India.utf8
#>
#> time zone: Asia/Calcutta
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] knitr_1.48 lfproQC_1.4.0
#>
#> loaded via a namespace (and not attached):
#> [1] tidyselect_1.2.1 viridisLite_0.4.2 dplyr_1.1.4
#> [4] farver_2.1.2 fastmap_1.2.0 lazyeval_0.2.2
#> [7] reshape_0.8.9 rpart_4.1.23 digest_0.6.36
#> [10] lifecycle_1.0.4 cluster_2.1.6 statmod_1.5.0
#> [13] magrittr_2.0.3 compiler_4.4.1 rlang_1.1.4
#> [16] Hmisc_5.1-2 sass_0.4.9 tools_4.4.1
#> [19] utf8_1.2.4 yaml_2.3.9 data.table_1.15.4
#> [22] labeling_0.4.3 htmlwidgets_1.6.4 sp_2.1-4
#> [25] plyr_1.8.9 abind_1.4-5 foreign_0.8-86
#> [28] withr_3.0.0 purrr_1.0.2 BiocGenerics_0.50.0
#> [31] nnet_7.3-19 grid_4.4.1 preprocessCore_1.66.0
#> [34] fansi_1.0.6 e1071_1.7-14 colorspace_2.1-0
#> [37] ggplot2_3.5.1 scales_1.3.0 MASS_7.3-60.2
#> [40] cli_3.6.3 rmarkdown_2.27 generics_0.1.3
#> [43] rstudioapi_0.16.0 robustbase_0.99-3 httr_1.4.7
#> [46] reshape2_1.4.4 cachem_1.1.0 affy_1.82.0
#> [49] proxy_0.4-27 stringr_1.5.1 zlibbioc_1.50.0
#> [52] BiocManager_1.30.23 vsn_3.72.0 base64enc_0.1-3
#> [55] matrixStats_1.3.0 vctrs_0.6.5 boot_1.3-30
#> [58] Matrix_1.7-0 jsonlite_1.8.8 carData_3.0-5
#> [61] car_3.1-2 htmlTable_2.4.3 Formula_1.2-5
#> [64] crosstalk_1.2.1 vcd_1.4-12 limma_3.60.4
#> [67] plotly_4.10.4 tidyr_1.3.1 jquerylib_0.1.4
#> [70] affyio_1.74.0 glue_1.7.0 DEoptimR_1.1-3
#> [73] stringi_1.8.4 gtable_0.3.5 lmtest_0.9-40
#> [76] munsell_0.5.1 tibble_3.2.1 pillar_1.9.0
#> [79] pcaMethods_1.96.0 htmltools_0.5.8.1 VIM_6.2.2
#> [82] R6_2.5.1 evaluate_0.24.0 lattice_0.22-6
#> [85] Biobase_2.64.0 highr_0.11 backports_1.5.0
#> [88] bslib_0.7.0 class_7.3-22 Rcpp_1.0.13
#> [91] checkmate_2.3.1 gridExtra_2.3 laeken_0.5.3
#> [94] ranger_0.16.0 xfun_0.46 zoo_1.8-12
#> [97] pkgconfig_2.0.3
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.