The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The latenetwork package provides tools for causal inference under noncompliance with treatment assignment and network interference of unknown form. The package enables to implement the instrumental variables (IV) estimation for the local average treatment effect (LATE) type parameters via inverse probability weighting (IPW) using the concept of instrumental exposure mapping (IEM) and the framework of approximate neighborhood interference (ANI).
The parameters of interest are as follows.
For more details on the identification and estimation methods, see
the “Review of Causal Inference with Noncompliance and Unknown
Interference” vignette with:
vignette("review", package = "latenetwork")
.
Get the package from CRAN:
or from GitHub:
The latenetwork package provides the following functions:
direct()
: Estimation and statistical inference for the
ADE parameters.indirect()
: Estimation and statistical inference for
the AIE parameters.overall()
: Estimation and statistical inference for the
AOE parameters.spillover()
: Estimation and statistical inference for
the ASE parameters.All package functions have the following arguments:
Y
: An n-dimensional outcome vector.D
: An n-dimensional binary treatment vector. Set
D
to the same argument as Z
if you would like
to perform the intention-to-treat analysis only.Z
: An n-dimensional binary instrumental vector.S
: An n-dimensional logical vector of indicating
whether each unit belongs to the sub-population on which the parameters
of interest are defined.A
: An n times n symmetric binary adjacency matrix whose
diagonal elements are 0.K
: A scalar of indicating the range of neighborhood
used for constructing interference sets. Default is 1.bw
: A scalar of bandwidth used for the HAC estimation
and the wild bootstrap. If bw = NULL
, the rule-of-thumb
bandwidth proposed by Leung (2022) is used. Default is NULL.B
: The number of bootstrap repetitions. If
B = NULL
, the wild bootstrap is skipped. Default is
NULL.alp
: The significance level. Default is 0.05.The direct()
function has the following additional
arguments:
IEM
: An n-dimensional instrumental exposure vector. If
t = NULL
, the constant IEM is used. Default is NULL.t
: A scalar of the evaluation point of the IEM. If
t = NULL
, the constant IEM is used. Default is NULL.The spillover()
function has the following additional
arguments:
IEM
: An n-dimensional instrumental exposure
vector.z
: A scalar of the evaluation point of the IV.t0
: A scalar of the evaluation point of the IEM
(from).t1
: A scalar of the evaluation point of the IEM
(to).Each function returns a data.frame with the following elements:
est
: The estimate of each parameter.HAC_SE
: The standard error computed by the network HAC
estimation.HAC_CI_L
: The lower bound of the confidence interval
computed by the network HAC estimation.HAC_CI_U
: The upper bound of the confidence interval
computed by the network HAC estimation.wild_SE
: The standard error computed by the wild
bootstrap.wild_CI_L
: The lower bound of the confidence interval
computed by the wild bootstrap.wild_CI_U
: The upper bound of the confidence interval
computed by the wild bootstrap.bw
: The bandwidth used for the HAC estimation and the
wild bootstrapsize
: The size of the subpopulation
S
:To run the following example, install the igraph package if needed.
# if needed --------------------------------------------------------------------
install.packages("igraph")
Generate artificial data from the datageneration()
function.
# Generate artificial data from a ring network----------------------------------
set.seed(1)
n <- 2000
data <- latenetwork::datageneration(n = n)
Perform the causal inference with:
# Arguments --------------------------------------------------------------------
Y <- data$Y
D <- data$D
Z <- data$Z
A <- data$A
IEM <- ifelse(A %*% Z > 0, 1, 0)
S <- rep(TRUE, n)
K <- 1
z <- 1
t <- 0
t0 <- 0
t1 <- 1
bw <- NULL
B <- NULL
alp <- 0.05
# Causal inference -------------------------------------------------------------
# The ADE parameters defined by IEM = (A %*% Z > 0)
result_direct1 <- latenetwork::direct(Y = Y,
D = D,
Z = Z,
IEM = IEM,
S = S,
A = A,
K = K,
t = t,
bw = bw,
B = B,
alp = alp)
# The ADE parameters defined by the constant IEM
result_direct2 <- latenetwork::direct(Y = Y,
D = D,
Z = Z,
IEM = NULL,
S = S,
A = A,
K = K,
t = NULL,
bw = bw,
B = B,
alp = alp)
# The AIE parameters defined by K = 1
result_indirect <- latenetwork::indirect(Y = Y,
D = D,
Z = Z,
S = S,
A = A,
K = K,
bw = bw,
B = B,
alp = alp)
# The AOE parameters defined by K = 1
result_overall <- latenetwork::overall(Y = Y,
D = D,
Z = Z,
S = S,
A = A,
K = K,
bw = bw,
B = B,
alp = alp)
# The ASE parameters defined by IEM = (A %*% Z > 0)
result_spillover <- latenetwork::spillover(Y = Y,
D = D,
Z = Z,
IEM = IEM,
S = S,
A = A,
K = K,
z = z,
t0 = t0,
t1 = t1,
bw = bw,
B = B,
alp = alp)
You can see the estimation results with:
result_direct1
#> est HAC_SE HAC_CI_L HAC_CI_U wild_SE wild_CI_L wild_CI_U bw
#> ADEY 0.4008916 0.09871458 0.2074146 0.5943686 NA NA NA 8
#> ADED 0.2499606 0.03485485 0.1816464 0.3182749 NA NA NA 8
#> LADE 1.6038190 0.36023112 0.8977789 2.3098590 NA NA NA 8
#> size
#> ADEY 2000
#> ADED 2000
#> LADE 2000
result_direct2
#> est HAC_SE HAC_CI_L HAC_CI_U wild_SE wild_CI_L wild_CI_U bw
#> ADEY 0.5632636 0.05254325 0.4602807 0.6662465 NA NA NA 8
#> ADED 0.3551812 0.02213500 0.3117974 0.3985650 NA NA NA 8
#> LADE 1.5858485 0.12418001 1.3424602 1.8292368 NA NA NA 8
#> size
#> ADEY 2000
#> ADED 2000
#> LADE 2000
result_indirect
#> est HAC_SE HAC_CI_L HAC_CI_U wild_SE wild_CI_L wild_CI_U bw
#> AIEY 0.2924892 0.08785062 0.1203051 0.4646732 NA NA NA 8
#> AIED 0.2897227 0.03205981 0.2268866 0.3525587 NA NA NA 8
#> ADED 0.3551812 0.02213500 0.3117974 0.3985650 NA NA NA 8
#> LAIE 0.8234928 0.25796895 0.3178830 1.3291027 NA NA NA 8
#> size
#> AIEY 2000
#> AIED 2000
#> ADED 2000
#> LAIE 2000
result_overall
#> est HAC_SE HAC_CI_L HAC_CI_U wild_SE wild_CI_L wild_CI_U bw
#> AOEY 0.8557528 0.09429867 0.6709308 1.0405748 NA NA NA 8
#> AOED 0.6449039 0.03744014 0.5715226 0.7182852 NA NA NA 8
#> ADED 0.3551812 0.02213500 0.3117974 0.3985650 NA NA NA 8
#> LAOE 2.4093413 0.27637076 1.8676646 2.9510181 NA NA NA 8
#> size
#> AOEY 2000
#> AOED 2000
#> ADED 2000
#> LAOE 2000
result_spillover
#> est HAC_SE HAC_CI_L HAC_CI_U wild_SE wild_CI_L wild_CI_U bw
#> ASEY 0.5750447 0.08065202 0.4169696 0.7331197 NA NA NA 8
#> ASED 0.3920457 0.03401795 0.3253718 0.4587197 NA NA NA 8
#> LASE 1.4667795 0.18557907 1.1030512 1.8305078 NA NA NA 8
#> size
#> ASEY 2000
#> ASED 2000
#> LASE 2000
Hoshino, T. and Yanagi, T., 2023. Causal inference with noncompliance and unknown interference. arXiv preprint arXiv:2108.07455. Link
Leung, M.P. (2022). Causal inference under approximate neighborhood interference. Econometrica, 90(1), pp.267-293. Link
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.