The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
To simulate epidemics in a heterogeneous landscape, landsepi
needs (among others) these three elements which are related one each
other:
- the spatial coordinates of fields composing the landscape (represented
as polygons),
- the allocation of croptypes in the different fields,
- a dispersal matrix for between-field pathogen migration.
landsepi includes built-in landscapes (and associated dispersal matrices for rust pathogens) and an algorithm to allocate croptypes, but is it possible to use your own landscape, dispersal matrix and croptype allocation.
Any landscape can be used to simulate epidemics in landsepi, provided that it is in sp or sf format and contains, at least, polygon coordinates.
library(sf)
mylandscape <- st_read(dsn = "myshapefile.shp")
library(landsepi)
simul_params <- createSimulParams(outputDir = getwd())
simul_params <- setLandscape(simul_params, mylandscape)
simul_params@Landscape
Then you can simply call the method allocateLandscapeCroptypes to allocate croptypes to the fields of the landscape with controlled proportions and spatio-temporal aggregation (see tutorial on how to run a simple simulation). Otherwise, you can use your own allocation (see below).
You must define for each year of simulation the index of the croptype (“croptypeID”) cultivated in each feature (polygons). Each feature has a field identified by “year_XX” (XX <- seq(1:Nyears+1)) and containing the croptype ID. Note that the allocation must contain one more year than the real number of simulated years (this is only for simulation purpose, the content of the allocation in year Nyears+1 does not affect the result).
Features/fields | year_1 | year_2 | … year_Nyears+1 |
---|---|---|---|
polygons1 | 13 | 10 | 13 |
polygonsX | 2 | 1 | 2 |
… |
An example for sf landscape:
mylandscape$year_1 <- c(13,2,4,1,1) # croptypes ID allocated to the different polygons
mylandscape$year_2 <- c(2,2,13,1,1)
Then simply add your landscape to the simulation parameters:
To simulate pathogen dispersal, landsepi needs a vectorized
matrix giving the probability of propagule dispersal from any field of
the landscape to any other field. This matrix must be computed
before running any simulation with landsepi. It is a
square matrix whose size is the number of fields in the landscape and
whose elements are, for each line \(i\)
and each column \(i'\) the
probability \(\mu_{ii'}\) that
propagules migrate from field \(i\)
(whose area is \(A_i\)) to field \(i'\) (whose area is \(A_{i'}\)). This probability is computed
from:
\[\mu_{ii'} = \frac { \int_{A_i}
\int_{A_{i'}} g(\mid\mid z'-z \mid\mid).dz.dz' } { A_i
}\]
with \(\mid\mid z'-z \mid\mid\) the
Euclidian distance between locations \(z\) and \(z'\) in fields \(i\) and \(i'\), respectively, and \(g(.)\) the two-dimensional dispersal kernel
of the propagules. Note that \(\sum_i
\mu_{ii'} = 1\).
landsepi includes built-in dispersal matrices to represent rust dispersal in the five built-in landscapes. These have been computed from a power-law dispersal kernel: \[g(\mid\mid z'-z \mid\mid) = \frac {(b-2).(b-1)} {2.\pi.a^2} . (1+ \frac {\mid\mid z'-z \mid\mid} {a})^{-b}\] with \(a\) the scale parameter and \(b\) a parameter related to the width of the dispersal kernel.
A new dispersal matrix must be computed to run simulations with a different landscape or a different dispersal kernel.
The computation of \(\mu_{ii'}\)
is performed using the CaliFloPP algorithm from the R package
RCALI. The RCALI package has a limited number of
built-in dispersal kernels. However, users can code for their own
dispersal kernel. See section “Details” in the documentation of the
function califlopp
to learn how to implement your own
kernel.
Here is an example illustrating the computation of the dispersal matrix on the first landscape supplied in landsepi.
install.packages("RCALI")
library(RCALI)
library(landsepi)
landscape <- landscapeTEST1
Npoly <- length(landscape)
Npoly
plot(landscape)
For compatibility with the function califlopp
, the
landscape can be modified with specific functions of package sf
relative to geographic projection (st_transform
), polygon
simplification (st_simplify
).
The function califlopp
needs a specific format for the
coordinates of each polygon (i.e. fields) composing the landscape.
file_land <- "land_rcali.txt" ## input for califlopp
file_disp <- "disp_rcali.txt" ## output for califlopp (DO NOT WRITE A PATH)
## Formatting the polygons-file for califlopp
cat(Npoly, file=file_land)
for (k in 1:Npoly) {
## extract coordinates of polygon vertices
coords <- landscape@polygons[[k]]@Polygons[[1]]@coords
## alternatively:
# coords <- as.data.frame(landscape$geometry[[k]][[1]])
n <- nrow(coords)
cat(NULL, file=file_land, append=T, sep="\n")
cat(c(k,k,n), file=file_land, append=T, sep="\t")
cat(NULL, file=file_land, append=T, sep="\n")
cat(coords[1:n,1], file=file_land, append=T, sep="\t")
cat(NULL,file=file_land,append=T,sep="\n")
cat(coords[1:n,2], file=file_land, append=T, sep="\t")
}
cat(NULL, file=file_land, append=T, sep="\n")
Then the function califlopp
calculates the flow of
particles between polygons using an integration method. Here we use the
dispersal kernel of oilseed rape pollen (available in RCALI:
use dispf=1
in the arguments of function
califlopp
, see ?califlopp
for details).
param <- list(input=2, output=0, method="cub", dp=6000, dz=6000
, warn.poly=FALSE, warn.conv=FALSE, verbose=FALSE)
califlopp(file=file_land, dispf=1, param=param, resfile=file_disp)
The RCALI package has a limited number of built-in dispersal
kernels (dispf = 1 in our example). However, users can code for their
own dispersal kernel (let say the name of your kernel is f
)
using dispf=f
in the function califlopp
:
my_df <-function(x, a=40, b=7) ((b-2)*(b-1)/(2*a^2*pi)*(1+(abs(x)/a))^(-b))
param <- list(input=2, output=0, method="cub", dp=6000, dz=6000, warn.poly=FALSE,
warn.conv=FALSE, verbose=FALSE)
califlopp(file=file_land, dispf=my_df, param=param, resfile=file_disp)
However, if there are many polygons in the landscape, computations
may be long. In this situation, we recommend to replace one of the
built-in functions of RCALI by your own function in the source code, and
to recompile RCALI. See paragraph “The individual dispersion functions”
in the details of the documentation of the califlopp function
(?califlopp
).
The output of califlopp must then be reformatted to generate the dispersal matrix that will be further used in landsepi. The vector of field areas can also be generated.
## Import califlopp results
disp_df <- getRes(file_disp)
## Double the table because only half of the flows have been calculated
emitter <- c(disp_df$poly1, disp_df$poly2)
receiver <- c(disp_df$poly2, disp_df$poly1)
## Write a text file containing a vector of areas of all polygons
area_e <- c(disp_df$area1, disp_df$area2)
area_r <- c(disp_df$area2, disp_df$area1)
area <- as.vector(by(area_e, emitter, mean))
write(area, file="area.txt", sep=",")
## Generation of the dispersal matrix
name_f <- "mean.flow"
flow_mean <- c(disp_df[,name_f], disp_df[,name_f])
flow_f <- cbind(emitter, receiver, flow_mean, area_e, area_r)
## Remove the doublons (i.e. half the lines where emitter == receiver)
flow_f[1:nrow(disp_df),][(disp_df$poly2 - disp_df$poly1) == 0,] <- NA
flow_f <- flow_f[is.na(apply(flow_f, 1, sum)) == F,]
flow_f <- as.data.frame(flow_f)
colnames(flow_f) <- c("emitter", "receiver", "flow", "area_e", "area_r")
flow_f <- flow_f[order(flow_f$emitter),]
## lines: emitter
## columns: receiver
matrix_f <- NULL
for(k in 1:Npoly){
## flow divided by the emitter area
matrix_f <- cbind(matrix_f, flow_f$flow[flow_f$receiver==k] / area)
}
## Normalisation of the matrix (reflecting boundaries)
## (do not normalise for absorbing boundaries)
flowtot_f <- apply(matrix_f,1,sum)
for(k in 1:Npoly){
matrix_f[k,] <- (matrix_f[k,] / flowtot_f[k]) ## In order to have sum == 1
}
write(as.vector(matrix_f), file="dispersal.txt", sep=",")
Then, to read the file, use:
Landscape structure can be plotted using the basic function
plot()
, or using the landsepi function
plotland()
:
To highlight a specific field:
poly <- 10
colFields <- rep("white", length(landscape))
colFields[poly] <- "red"
plot(landscape, col = colFields)
To check the dispersal matrix and represent in a graphic the flow emitted by a specific polygon, use:
## convert dispersal in matrix
mat <- matrix(disp_patho, nrow=sqrt(length(disp_patho)))
poly <- 1
dispToPlot <- log10(mat[poly,] +1E-20) ## 1E-20 to avoid log(0)
## Colour palette
nCol <- 11
whiteYellowRed <- colorRampPalette(c("white", "#FFFF99", "#990000"))
col_disp <- whiteYellowRed(nCol)
intvls <- seq(min(dispToPlot) - 1, max(dispToPlot) + 1, length.out=nCol)
intvls_disp <- findInterval(dispToPlot, intvls)
## Plot
plot(landscape, col = col_disp[intvls_disp], main=paste("Dispersal from polygon", poly))
With package ggplot2:
library(ggplot2)
ggplot(landscape) + ggtitle(paste("Dispersal from polygon", poly)) +
geom_sf(colour="black", aes(fill = dispToPlot)) +
scale_fill_gradientn(name="Prob. of\ndispersal", colours=rev(heat.colors(10)), breaks=-1:-10, labels=10^(-1:-10)) +
# theme_classic() +
theme(axis.line=element_blank(),axis.text.x=element_blank(),
axis.text.y=element_blank(),axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank(),
panel.background=element_blank(),panel.border=element_blank(),panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),plot.background=element_blank())
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.