The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
New features
null_action
argument to val_labels()
, val_label()
and a .null_action
argument to set_value_labels()
, add_value_labels()
and remove_value_labels()
(#145)update_variable_labels_with()
and update_value_labels_with()
allowing to update variable/value labels with a custom function (#153)Bug fix
print.look_for()
when console pane is physically shrunk too small (#148)recode.haven_labelled()
when .x
contains NA
and .combine_value_labels = TRUE
(#151)New features
label_attribute()
, get_label_attribute()
and set_label_attribute()
to manipulate the “label” attribute on any object (#142)get_variable_labels()
, get_value_labels()
, get_na_values()
and get_na_range()
identical to var_label()
, val_labels()
, na_values()
and na_range()
, respectivelyto_character()
method for data frames (#140)Improvements
set_value_labels()
, add_value_labels()
, remove_value_labels()
, set_variable_labels()
, set_na_range()
and set_na_values()
can now be applied on a vector (#126)null_action
for var_label()
when applied on a data frame (#131)look_for()
now returns "missing"
(number of NA
s) by default (#133)Bug fixes
print.look_for()
(#135)unlabelled()
for classic vectors, now remained unchanged (#137)look_for()
now accepts survey
objects (#121)look_for()
when no keyword is provided (#116)user_na_to_tagged_na()
(#114)look_for() improvements:
look_for_and_select()
(#87)look_for()
can now search within factor levels and value labels (#104)improvements for tagged NAs:
user_na_to_tagged_na()
, tagged_na_to_user_na()
and tagged_na_to_regular_na()
explicit_tagged_na
in to_factor()
and to_character()
unique_tagged_na()
, duplicated_tagged_na()
, order_tagged_na()
, sort_tagged_na()
(#90, #91)other improvements:
is_user_na()
and is_regular_na()
na_range()
or na_values()
to a factor will now produce an errorforeign_to_labelled()
for Stata files (#100)recode_if()
for recoding values based on condition, variable and value labels being preserved (#82)look_for()
could be time consuming for big data frames. Now, by default, only basic details of each variable are computed. You can compute all details with details = "full"
(#77)look_for()
results has been updated and do not rely anymore on pillar
(#85)to_labelled()
can properly manage factors whose levels are coded as “[code] level”, as produced by to_factor(levels = "prefixed")
(#74 @courtiol)is_prefixed()
to check if a factor is prefixedna_range<-
and na_values<-
when applied to a data.frame (#80).values
argument has been added to set_na_values()
and set_na_range()
, allowing to pass a list of values.strict
option has been added to set_variable_labels()
, set_value_labels()
, add_value_labels()
, remove_value_labels()
, set_na_values()
and set_na_range()
, allowing to pass values for columns not observed in the data (it could be useful for using a same list of labels for several data.frame sharing some variables) (#70)copy_labels()
is less restrictive for non labelled vectors, copying variable label even if the two vectors are not of the same type (#71).strict
option has been added to copy_labels()
(#71)look_for()
has been redesigned:
look_for()
now returns a tibblelookfor_to_long_format()
to convert results with one row per factor level and per value labelconvert_list_columns_to_character()
to convert list columns to simpler character vectorsgenerate_dictionary()
is an equivalent of look_for()
set_variable_labels
, set_value_labels
, add_value_labels
, and remove_value_labels
now accept “tidy dots” (#67 @psanker)names_prefixed_by_values()
to get the names of a vector prefixed by their corresponding value.keep_value_labels
argument for recode.haven_labelled()
.combine_value_labels
argument for recode.haven_labelled()
(#61)drop_unused_value_labels()
method.labels
argument for set_value_labels()
user_na_to_na
argument has been added to to_character.haven_labelled()
%>%
is now imported from dplyr
haven
update_labelled()
has been improved to allow to reconstruct all labelled vectors created with a previous version of haven
keep_var_label
for remove_labels()
unlabelled()
when applied on a vectorunclass = TRUE
with to_factor()
, attributes are not removed anymoreunlabelled()
look_for()
(#52 by @NoahMarconi)val_labels_to_na()
documentationna_range()
and na_values()
: variable labels are now preserved (#48, thanks to @mspittler)copy_labels_from()
, compliant with dplyr
syntaxupdate_labelled()
is now more strict (#42 by @iago-pssjd)look_for()
and lookfor()
imported from questionr
(#44)unlist
option for var_label()
tagged_na()
and similar functions are now imported from haven
var_label()
, applied to a data.frame, now accepts a character vector of same length as the number of columns.set_variable_labels
has a new .labels
argument.unclass
option in to_factor()
, to be used when strict = TRUE
(#36)haven
version 2.1.0, it is not mandatory anymore to define a value label before defining a SPSS style missing value. labelled_spss()
, na_values()
and na_range()
have been updated accordingly (#37)to_factor()
bug fix then applied on a data.frame (#33)update_labelled()
bug fix then applied on a data.frame (#31)haven
, labelled()
and labelled_spss()
now produce objects with class “haven_labelled” and “haven_labelled_spss”, due to conflict between the previous “labelled” class and the “labelled” class used by Hmisc
.update_labelled()
could be used to convert data imported with an older version of haven
to the new classes.user_na_to_na
option added to to_factor()
foreign_to_labelled()
now import SPSS missing values (#27)strict
argument added to to_factor()
(#25)remove_attributes()
preserve character vectors (#30)dplyr::recode()
method to be compatible with labelled vectors.copy_labels()
now copy also na_range
and na_values
attributes.remove_attributes()
drop_unused_labels
could now be used with to_factor.data.frame()
to_labelled()
method when applied to a factordata.frame
(#20)haven
na_values()
, na_range()
, set_na_values()
, set_na_values()
, remove_user_na()
, user_na_to_na()
.remove_labels()
has been updated.set_variable_labels()
, set_value_labels()
, add_value_labels()
and remove_value_labels()
compatible with %>%
.remove_val_labels
and remove_var_label()
.to_character.labelled()
when applied to data frames.to_factor()
, to_character()
and to_labelled.factor()
now preserves variable label.to_factor()
when applied to data frames.haven
, labelled
doesn’t support missing values anymore (cf. https://github.com/hadley/haven/commit/4b12ff9d51ddb9e7486966b85e0bcff44992904d)to_character()
(cf. https://github.com/larmarange/labelled/commit/3d32852587bb707d06627e56407eed1c9d5a49de)to_factor()
could now be applied to a data.frame (cf. https://github.com/larmarange/labelled/commit/ce1d750681fe0c9bcd767cb83a8d72ed4c5fc5fb)data.table
is available, labelled attribute are now changed by reference (cf. https://github.com/larmarange/labelled/commit/c8b163f706122844d798e6625779e8a65e5bbf41)zap_labels()
added as a synonym of remove_labels()
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.