The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: L1-Ball Prior for Sparse Regression
Version: 0.1.0
Author: Maoran Xu and Leo L. Duan
Maintainer: Maoran Xu <maoranxu@ufl.edu>
Description: Provides function for the l1-ball prior on high-dimensional regression. The main function, l1ball(), yields posterior samples for linear regression, as introduced by Xu and Duan (2020) <doi:10.48550/arXiv.2006.01340>.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Depends: R (≥ 3.1.0)
Imports: VGAM, stats
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.0
NeedsCompilation: no
Packaged: 2020-07-20 01:52:51 UTC; maoran
Repository: CRAN
Date/Publication: 2020-07-24 17:10:02 UTC

Fit the L1 prior

Description

This package provides an implementation of the Gibbs sampler, for using l1-ball prior with the regression likelihood y_i = X_i\theta+ \epsilon_i, \epsilon_i\sim {N}(0,\sigma^2).

Arguments

y

A data vector, n by 1

X

A design matrix, n by p

b_w

The parameter in Beta(1, p^{b_w}) for w, default b_w=1

step

Number of steps to run the Markov Chain Monte Carlo

burnin

Number of burn-ins

b_lam

The parameter in \lambda_i \sim Inverse-Gamma(1, b_\lambda), default b_\lambda=10^{-3}. To increase the level of shrinkage, use smaller b_\lambda.

Value

The posterior sample collected from the Markov Chain:

Examples

n = 60
p = 100
X <- matrix(rnorm(n*p),n,p)
d = 5
w0 <- c(rep(0, p-d), rnorm(d)*0.1+1)
y = X%*% w0 + rnorm(n,0,.1)
trace <- l1ball(y,X,steps=2000,burnin = 2000)
plot(colMeans(trace$trace_theta))

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.