The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
keyholder
is a package for storing information
(keys) about rows of data frame like objects. The common use
cases are to track rows of data without modifying it and to backup and
restore information about rows. This is done with creating a class
keyed_df which has special attribute “keys”. Keys are
updated according to changes in rows of reference data frame.
keyholder
is designed to work tightly with dplyr package. All its
one- and two-table verbs update keys properly.
The general agreement is that keys are always converted to tibble. In this way one can use multiple variables as keys by binding them.
There are two general ways of creating keys:
as_tibble()
. To make sense it should have the same number
of rows as reference data frame. There are two functions for assigning:
keys<-
and assign_keys()
which are
basically the same. The former use more suitable for interactive use and
the latter - for piping with magrittr’s pipe operator
%>%
.mtcars_tbl_keyed <- mtcars_tbl
keys(mtcars_tbl_keyed) <- tibble(id = 1:nrow(mtcars_tbl_keyed))
mtcars_tbl %>% assign_keys(tibble(id = 1:nrow(.)))
#> # A keyed object. Keys: id
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
key_by()
and its scoped variants
(*_all()
, *_if()
and *_at()
).
This is similar in its design to dplyr
’s
group_by()
: it takes some columns from reference data frame
and makes keys from them. It has two important options:
.add
(whether to add specified columns to existing keys)
and .exclude
(whether to exclude specified columns from
reference data frame). Grouping is ignored.mtcars_tbl %>% key_by(vs, am)
#> # A keyed object. Keys: vs, am
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl %>% key_by(starts_with("c"))
#> # A keyed object. Keys: cyl, carb
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl %>% key_by(starts_with("c"), .exclude = TRUE)
#> # A keyed object. Keys: cyl, carb
#> # A tibble: 32 × 9
#> mpg disp hp drat wt qsec vs am gear
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 160 110 3.9 2.62 16.5 0 1 4
#> 2 21 160 110 3.9 2.88 17.0 0 1 4
#> 3 22.8 108 93 3.85 2.32 18.6 1 1 4
#> # … with 29 more rows
# Scoped variants
mtcars_tbl %>% key_by_all()
#> # A keyed object. Keys: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
# One can also rename variables before keying by supplying .funs
mtcars_tbl %>% key_by_if(rlang::is_integerish, .funs = toupper)
#> # A keyed object. Keys: CYL, HP, VS, AM, GEAR, CARB
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl %>% key_by_at(c("vs", "am"))
#> # A keyed object. Keys: vs, am
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
To track rows use use_id()
which creates a special key
.id
with row numbers as values.
To properly unkey object use unkey()
.
mtcars_tbl_keyed <- mtcars_tbl %>% key_by(vs, am)
# Good
mtcars_tbl_keyed %>% unkey()
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
# Bad
attr(mtcars_tbl_keyed, "keys") <- NULL
mtcars_tbl_keyed
#> # A keyed object. Keys: there are no keys.
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
There are three ways of extracting keys:
keys()
. This function always returns a tibble. In
case of no keys it returns a tibble with number of rows as in reference
data frame and zero columns.mtcars_tbl %>% keys()
#> # A tibble: 32 × 0
mtcars_tbl %>% key_by(vs, am) %>% keys()
#> # A tibble: 32 × 2
#> vs am
#> <dbl> <dbl>
#> 1 0 1
#> 2 0 1
#> 3 1 1
#> # … with 29 more rows
raw_keys()
which is just a wrapper for
attr(.tbl, "keys")
.mtcars_tbl %>% raw_keys()
#> NULL
mtcars_tbl %>% key_by(vs, am) %>% raw_keys()
#> # A tibble: 32 × 2
#> vs am
#> <dbl> <dbl>
#> 1 0 1
#> 2 0 1
#> 3 1 1
#> # … with 29 more rows
pull_key()
which works like dplyr
’s
pull
applied to keys:remove_keys()
and its scoped
variants. If all keys are removed one can automatically unkey object by
setting option .unkey
to TRUE
.mtcars_tbl %>% key_by(vs, mpg) %>% remove_keys(vs)
#> # A keyed object. Keys: mpg
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl %>% key_by(vs, mpg) %>% remove_keys(everything(), .unkey = TRUE)
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
# Scoped variants
# Identical to previous one
mtcars_tbl %>% key_by(vs, mpg) %>% remove_keys_all(.unkey = TRUE)
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl %>% key_by(vs, mpg) %>% remove_keys_if(rlang::is_integerish)
#> # A keyed object. Keys: mpg
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
restore_keys()
and its scoped
variants. Restoring means creating or modifying a column in reference
data frame with values taken from keys. After restoring certain key one
can remove it from keys by setting .remove
to
TRUE
. There is also an option .unkey
identical
to one in remove_keys()
(which is meaningful only in case
.remove
is TRUE
).mtcars_tbl_keyed <- mtcars_tbl %>%
key_by(vs, mpg) %>%
mutate(vs = 1, mpg = 0)
mtcars_tbl_keyed
#> # A keyed object. Keys: vs, mpg
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 6 160 110 3.9 2.62 16.5 1 1 4 4
#> 2 0 6 160 110 3.9 2.88 17.0 1 1 4 4
#> 3 0 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl_keyed %>% restore_keys(vs)
#> # A keyed object. Keys: vs, mpg
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 0 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 0 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl_keyed %>% restore_keys(vs, .remove = TRUE)
#> # A keyed object. Keys: mpg
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 0 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 0 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl_keyed %>% restore_keys(vs, mpg, .unkey = TRUE)
#> # A keyed object. Keys: vs, mpg
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl_keyed %>% restore_keys(vs, mpg, .remove = TRUE, .unkey = TRUE)
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
# Scoped variants
mtcars_tbl_keyed %>% restore_keys_all()
#> # A keyed object. Keys: vs, mpg
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl_keyed %>% restore_keys_if(rlang::is_integerish, .remove = TRUE)
#> # A keyed object. Keys: mpg
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 0 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 0 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
One important feature of restore_keys()
is that
restoring keys beats ‘not-modifying’ grouping variables rule. It is made
according to the ideology of keys: they contain information about rows
and by restoring you want it to be available. Groups are recomputed
after restoring.
mtcars_tbl_keyed %>% group_by(vs, mpg)
#> # A keyed object. Keys: vs, mpg
#> # A tibble: 32 × 11
#> # Groups: vs, mpg [1]
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 6 160 110 3.9 2.62 16.5 1 1 4 4
#> 2 0 6 160 110 3.9 2.88 17.0 1 1 4 4
#> 3 0 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
mtcars_tbl_keyed %>% group_by(vs, mpg) %>% restore_keys(vs, mpg)
#> # A keyed object. Keys: vs, mpg
#> # A tibble: 32 × 11
#> # Groups: vs, mpg [26]
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
rename_keys()
and its scoped variants.
Renaming is done with dplyr
’s rename()
or its
scoped variant and so renaming format comes from them.mtcars_tbl %>% key_by(vs, am) %>% rename_keys(Vs = vs)
#> # A keyed object. Keys: Vs, am
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
# Scoped variants
mtcars_tbl %>% key_by(vs, am) %>% rename_keys_all(.funs = toupper)
#> # A keyed object. Keys: VS, AM
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # … with 29 more rows
A method for subsetting function [
is implemented for
keyed_df
to react on changes in rows: if rows in reference
data frame are rearranged or removed the same operation is done to
keys.
mtcars_tbl_subset <- mtcars_tbl %>% key_by(vs, am) %>%
`[`(c(3, 18, 19), c(2, 8, 9))
mtcars_tbl_subset
#> # A keyed object. Keys: vs, am
#> # A tibble: 3 × 3
#> cyl vs am
#> <dbl> <dbl> <dbl>
#> 1 4 1 1
#> 2 4 1 1
#> 3 4 1 1
keys(mtcars_tbl_subset)
#> # A tibble: 3 × 2
#> vs am
#> <dbl> <dbl>
#> 1 1 1
#> 2 1 1
#> 3 1 1
All one- and two-table verbs from dplyr
(with present
scoped variants) support keyed_df
. Most functions react to
changes in rows as in [
but some functions
(summarise()
, distinct()
and
do()
) unkey object.
mtcars_tbl_keyed <- mtcars_tbl %>% key_by(vs, am)
mtcars_tbl_keyed %>% select(gear, mpg)
#> # A keyed object. Keys: vs, am
#> # A tibble: 32 × 2
#> gear mpg
#> <dbl> <dbl>
#> 1 4 21
#> 2 4 21
#> 3 4 22.8
#> # … with 29 more rows
mtcars_tbl_keyed %>% summarise(meanMPG = mean(mpg))
#> # A tibble: 1 × 1
#> meanMPG
#> <dbl>
#> 1 20.1
mtcars_tbl_keyed %>% filter(vs == 1) %>% keys()
#> # A tibble: 14 × 2
#> vs am
#> <dbl> <dbl>
#> 1 1 1
#> 2 1 0
#> 3 1 0
#> # … with 11 more rows
mtcars_tbl_keyed %>% arrange_at("mpg") %>% keys()
#> # A tibble: 32 × 2
#> vs am
#> <dbl> <dbl>
#> 1 0 0
#> 2 0 0
#> 3 0 0
#> # … with 29 more rows
band_members %>% key_by(name) %>%
semi_join(band_instruments, by = "name") %>%
keys()
#> # A tibble: 2 × 1
#> name
#> <chr>
#> 1 John
#> 2 Paul
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.