The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
For details, see the API documentation.
install.packages("kde1d")
# install.packages("remotes")
::install_github("tnagler/kde1d@dev") remotes
<- rnorm(100) # simulate data
x <- kde1d(x) # estimate density
fit dkde1d(0, fit) # evaluate density estimate
summary(fit) # information about the estimate
plot(fit) # plot the density estimate
curve(dnorm(x), add = TRUE, # add true density
col = "red")
<- rgamma(100, shape = 1) # simulate data
x <- kde1d(x, xmin = 0, deg = 1) # estimate density
fit dkde1d(seq(0, 5, by = 1), fit) # evaluate density estimate
summary(fit) # information about the estimate
plot(fit) # plot the density estimate
curve(dgamma(x, shape = 1), # add true density
add = TRUE, col = "red",
from = 1e-3)
<- rbinom(100, size = 5, prob = 0.5) # simulate data
x <- ordered(x, levels = 0:5) # declare as ordered
x <- kde1d(x, xmin = 0, xmax = 5, # estimate density
fit type = "discrete")
<- kde1d(ordered(x, levels = 0:5)) # alternative API
fit dkde1d(sort(unique(x)), fit) # evaluate density estimate
summary(fit) # information about the estimate
plot(fit) # plot the density estimate
points(ordered(0:5, 0:5), # add true density
dbinom(0:5, 5, 0.5), col = "red")
<- rexp(500, 0.5) # simulate data
x sample(1:500, 200)] <- 0 # add zero-inflation
x[<- kde1d(x, xmin = 0, type = "zi") # estimate density
fit plot(fit) # plot the density estimate
lines( # add true density
seq(0, 20, l = 100),
0.6 * dexp(seq(0, 20, l = 100), 0.5),
col = "red"
)points(0, 0.4, col = "red")
<- rnorm(100) # simulate data
x <- rexp(100) # weights as in Bayesian bootstrap
weights <- kde1d(x, weights = weights) # weighted fit
fit plot(fit) # compare with unweighted fit
lines(kde1d(x), col = 2)
Geenens, G. (2014). Probit transformation for kernel density estimation on the unit interval. Journal of the American Statistical Association, 109:505, 346-358, arXiv:1303.4121
Geenens, G., Wang, C. (2018). Local-likelihood transformation kernel density estimation for positive random variables. Journal of Computational and Graphical Statistics, 27(4), 822-835. arXiv:1602.04862
Loader, C. (2006). Local regression and likelihood. Springer Science & Business Media.
Nagler, T. (2018a). A generic approach to nonparametric function estimation with mixed data. Statistics & Probability Letters, 137:326–330, arXiv:1704.07457
Nagler, T. (2018b). Asymptotic analysis of the jittering kernel density estimator. Mathematical Methods of Statistics, 27, 32-46. arXiv:1705.05431
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.