The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Introduce jstable

Jinseob Kim

2024-12-11

Regression Tables from ‘GLM’, ‘GEE’, ‘GLMM’, ‘Cox’ and ‘survey’ Results for Publication.

Install

remotes::install_github("jinseob2kim/jstable")
library(jstable)

GLM Table

## Gaussian
glm_gaussian <- glm(mpg ~ cyl + disp, data = mtcars)
glmshow.display(glm_gaussian, decimal = 2)
#> $first.line
#> [1] "Linear regression predicting mpg\n"
#> 
#> $table
#>      crude coeff.(95%CI)   crude P value adj. coeff.(95%CI)    adj. P value
#> cyl  "-2.88 (-3.51,-2.24)" "< 0.001"     "-1.59 (-2.98,-0.19)" "0.034"     
#> disp "-0.04 (-0.05,-0.03)" "< 0.001"     "-0.02 (-0.04,0)"     "0.054"     
#> 
#> $last.lines
#> [1] "No. of observations = 32\nR-squared = 0.7596\nAIC value = 167.1456\n\n"
#> 
#> attr(,"class")
#> [1] "display" "list"

## Binomial
glm_binomial <- glm(vs ~ cyl + disp, data = mtcars, family = binomial)
glmshow.display(glm_binomial, decimal = 2)
#> $first.line
#> [1] "Logistic regression predicting vs\n"
#> 
#> $table
#>      crude OR.(95%CI)   crude P value adj. OR.(95%CI)    adj. P value
#> cyl  "0.2 (0.08,0.56)"  "0.002"       "0.15 (0.02,1.02)" "0.053"     
#> disp "0.98 (0.97,0.99)" "0.002"       "1 (0.98,1.03)"    "0.715"     
#> 
#> $last.lines
#> [1] "No. of observations = 32\nAIC value = 23.8304\n\n"
#> 
#> attr(,"class")
#> [1] "display" "list"

GEE Table: from geeglm object from geepack package

library(geepack) ## for dietox data
data(dietox)
dietox$Cu <- as.factor(dietox$Cu)
dietox$ddn <- as.numeric(rnorm(nrow(dietox)) > 0)
gee01 <- geeglm(Weight ~ Time + Cu, id = Pig, data = dietox, family = gaussian, corstr = "ex")
geeglm.display(gee01)
#> $caption
#> [1] "GEE(gaussian) predicting Weight by Time, Cu - Group Pig"
#> 
#> $table
#>                crude coeff(95%CI)   crude P value adj. coeff(95%CI)  
#> Time           "6.94 (6.79,7.1)"    "< 0.001"     "6.94 (6.79,7.1)"  
#> Cu: ref.=Cu000 NA                   NA            NA                 
#>       035      "-0.59 (-3.73,2.54)" "0.711"       "-0.84 (-3.9,2.23)"
#>       175      "1.9 (-1.87,5.66)"   "0.324"       "1.77 (-1.9,5.45)" 
#>                adj. P value
#> Time           "< 0.001"   
#> Cu: ref.=Cu000 NA          
#>       035      "0.593"     
#>       175      "0.345"     
#> 
#> $metric
#>                                  crude coeff(95%CI) crude P value
#>                                  NA                 NA           
#> Estimated correlation parameters "0.775"            NA           
#> No. of clusters                  "72"               NA           
#> No. of observations              "861"              NA           
#>                                  adj. coeff(95%CI) adj. P value
#>                                  NA                NA          
#> Estimated correlation parameters NA                NA          
#> No. of clusters                  NA                NA          
#> No. of observations              NA                NA

gee02 <- geeglm(ddn ~ Time + Cu, id = Pig, data = dietox, family = binomial, corstr = "ex")
geeglm.display(gee02)
#> $caption
#> [1] "GEE(binomial) predicting ddn by Time, Cu - Group Pig"
#> 
#> $table
#>                crude OR(95%CI)    crude P value adj. OR(95%CI)     adj. P value
#> Time           "0.99 (0.95,1.02)" "0.423"       "0.99 (0.95,1.02)" "0.423"     
#> Cu: ref.=Cu000 NA                 NA            NA                 NA          
#>       035      "1.01 (0.72,1.43)" "0.94"        "1.01 (0.72,1.44)" "0.937"     
#>       175      "0.94 (0.65,1.36)" "0.738"       "0.94 (0.65,1.36)" "0.739"     
#> 
#> $metric
#>                                  crude OR(95%CI) crude P value adj. OR(95%CI)
#>                                  NA              NA            NA            
#> Estimated correlation parameters "0.002"         NA            NA            
#> No. of clusters                  "72"            NA            NA            
#> No. of observations              "861"           NA            NA            
#>                                  adj. P value
#>                                  NA          
#> Estimated correlation parameters NA          
#> No. of clusters                  NA          
#> No. of observations              NA

Mixed model Table: lmerMod or glmerMod object from lme4 package

library(lme4)
l1 <- lmer(Weight ~ Time + Cu + (1 | Pig), data = dietox)
lmer.display(l1, ci.ranef = T)
#> $table
#>                      crude coeff(95%CI) crude P value adj. coeff(95%CI)
#> Time                   6.94 (6.88,7.01)     0.0000000  6.94 (6.88,7.01)
#> Cu: ref.=Cu000                     <NA>            NA              <NA>
#>       035            -0.58 (-4.67,3.51)     0.7811327 -0.84 (-4.47,2.8)
#>       175              1.9 (-2.23,6.04)     0.3670740  1.77 (-1.9,5.45)
#> Random effects                     <NA>            NA              <NA>
#> Pig                 40.34 (28.08,54.95)            NA              <NA>
#> Residual             11.37 (10.3,12.55)            NA              <NA>
#> Metrics                            <NA>            NA              <NA>
#> No. of groups (Pig)                  72            NA              <NA>
#> No. of observations                 861            NA              <NA>
#> Log-likelihood                  -2400.8            NA              <NA>
#> AIC value                        4801.6            NA              <NA>
#>                     adj. P value
#> Time                   0.0000000
#> Cu: ref.=Cu000                NA
#>       035              0.6527264
#>       175              0.3442309
#> Random effects                NA
#> Pig                           NA
#> Residual                      NA
#> Metrics                       NA
#> No. of groups (Pig)           NA
#> No. of observations           NA
#> Log-likelihood                NA
#> AIC value                     NA
#> 
#> $caption
#> [1] "Linear mixed model fit by REML : Weight ~ Time + Cu + (1 | Pig)"

l2 <- glmer(ddn ~ Time + Cu + (1 | Pig), data = dietox, family = "binomial")
lmer.display(l2)
#> $table
#>                      crude OR(95%CI) crude P value   adj. OR(95%CI)
#> Time                0.99 (0.95,1.02)     0.4475615 0.99 (0.95,1.02)
#> Cu: ref.=Cu000                  <NA>            NA             <NA>
#>       035           1.01 (0.73,1.41)     0.9368966 1.01 (0.73,1.41)
#>       175           0.94 (0.67,1.31)     0.7141273 0.94 (0.67,1.31)
#> Random effects                  <NA>            NA             <NA>
#> Pig                             0.01            NA             <NA>
#> Metrics                         <NA>            NA             <NA>
#> No. of groups (Pig)               72            NA             <NA>
#> No. of observations              861            NA             <NA>
#> Log-likelihood               -596.35            NA             <NA>
#> AIC value                     1202.7            NA             <NA>
#>                     adj. P value
#> Time                   0.4473446
#> Cu: ref.=Cu000                NA
#>       035              0.9340199
#>       175              0.7155499
#> Random effects                NA
#> Pig                           NA
#> Metrics                       NA
#> No. of groups (Pig)           NA
#> No. of observations           NA
#> Log-likelihood                NA
#> AIC value                     NA
#> 
#> $caption
#> [1] "Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) : ddn ~ Time + Cu + (1 | Pig)"

Cox model with frailty or cluster options

library(survival)
fit1 <- coxph(Surv(time, status) ~ ph.ecog + age, cluster = inst, lung, model = T) ## model = T: to extract original data
fit2 <- coxph(Surv(time, status) ~ ph.ecog + age + frailty(inst), lung, model = T)
cox2.display(fit1)
#> $table
#>         crude HR(95%CI)    crude P value adj. HR(95%CI)  adj. P value
#> ph.ecog "1.61 (1.25,2.08)" "< 0.001"     "1.56 (1.22,2)" "< 0.001"   
#> age     "1.02 (1.01,1.03)" "0.007"       "1.01 (1,1.02)" "0.085"     
#> 
#> $ranef
#>         [,1] [,2] [,3] [,4]
#> cluster   NA   NA   NA   NA
#> inst      NA   NA   NA   NA
#> 
#> $metric
#>                         [,1] [,2] [,3] [,4]
#> <NA>                      NA   NA   NA   NA
#> No. of observations  226.000   NA   NA   NA
#> No. of events        163.000   NA   NA   NA
#> AIC                 1463.797   NA   NA   NA
#> 
#> $caption
#> [1] "Marginal Cox model on time ('time') to event ('status') - Group inst"
cox2.display(fit2)
#> $table
#>         crude HR(95%CI)    crude P value adj. HR(95%CI)     adj. P value
#> ph.ecog "1.64 (1.31,2.05)" "< 0.001"     "1.58 (1.26,1.99)" "< 0.001"   
#> age     "1.02 (1,1.04)"    "0.041"       "1.01 (0.99,1.03)" "0.225"     
#> 
#> $ranef
#>         [,1] [,2] [,3] [,4]
#> frailty   NA   NA   NA   NA
#> inst      NA   NA   NA   NA
#> 
#> $metric
#>                         [,1] [,2] [,3] [,4]
#> <NA>                      NA   NA   NA   NA
#> No. of observations  226.000   NA   NA   NA
#> No. of events        163.000   NA   NA   NA
#> AIC                 1463.223   NA   NA   NA
#> 
#> $caption
#> [1] "Frailty Cox model on time ('time') to event ('status') - Group inst"

Cox mixed effect model Table: coxme object from coxme package

library(coxme)
fit <- coxme(Surv(time, status) ~ ph.ecog + age + (1 | inst), lung)
coxme.display(fit)
#> $table
#>         crude HR(95%CI)    crude P value adj. HR(95%CI)     adj. P value
#> ph.ecog "1.66 (1.32,2.09)" "< 0.001"     "1.61 (1.27,2.03)" "< 0.001"   
#> age     "1.02 (1,1.04)"    "0.043"       "1.01 (0.99,1.03)" "0.227"     
#> 
#> $ranef
#>                 [,1] [,2] [,3] [,4]
#> Random effect     NA   NA   NA   NA
#> inst(Intercept) 0.02   NA   NA   NA
#> 
#> $metric
#>                     [,1] [,2] [,3] [,4]
#> <NA>                  NA   NA   NA   NA
#> No. of groups(inst)   18   NA   NA   NA
#> No. of observations  226   NA   NA   NA
#> No. of events        163   NA   NA   NA
#> 
#> $caption
#> [1] "Mixed effects Cox model on time ('time') to event ('status') - Group inst"

GLM for survey data : svyglm object from survey package

library(survey)
data(api)
apistrat$tt <- c(rep(1, 20), rep(0, nrow(apistrat) - 20))
apistrat$tt2 <- factor(c(rep(0, 40), rep(1, nrow(apistrat) - 40)))

dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat, fpc = ~fpc)
ds <- svyglm(api00 ~ ell + meals + tt2, design = dstrat)
ds2 <- svyglm(tt ~ ell + meals + tt2, design = dstrat, family = quasibinomial())
svyregress.display(ds)
#> $first.line
#> [1] "Linear regression predicting api00- weighted data\n"
#> 
#> $table
#>             crude coeff.(95%CI)    crude P value adj. coeff.(95%CI)   
#> ell         "-3.73 (-4.36,-3.1)"   "< 0.001"     "-0.51 (-1.27,0.26)" 
#> meals       "-3.38 (-3.71,-3.05)"  "< 0.001"     "-3.11 (-3.65,-2.57)"
#> tt2: 1 vs 0 "10.98 (-34.44,56.39)" "0.634"       "6.24 (-17.83,30.32)"
#>             adj. P value
#> ell         "0.195"     
#> meals       "< 0.001"   
#> tt2: 1 vs 0 "0.61"      
#> 
#> $last.lines
#> [1] "No. of observations = 200\nAIC value = 2308.0628\n\n"
#> 
#> attr(,"class")
#> [1] "display" "list"
svyregress.display(ds2)
#> $first.line
#> [1] "Logistic regression predicting tt- weighted data\n"
#> 
#> $table
#>             crude OR.(95%CI)   crude P value adj. OR.(95%CI)    adj. P value
#> ell         "1.02 (1,1.05)"    "0.047"       "1.11 (1.02,1.21)" "0.02"      
#> meals       "1.01 (0.99,1.03)" "0.255"       "0.97 (0.93,1.01)" "0.151"     
#> tt2: 1 vs 0 "0 (0,0)"          "< 0.001"     "0 (0,0)"          "< 0.001"   
#> 
#> $last.lines
#> [1] "No. of observations = 200\n\n"
#> 
#> attr(,"class")
#> [1] "display" "list"

Cox model for survey data :svycoxph object from survey package

data(pbc, package = "survival")
pbc$sex <- factor(pbc$sex)
pbc$stage <- factor(pbc$stage)
pbc$randomized <- with(pbc, !is.na(trt) & trt > 0)
biasmodel <- glm(randomized ~ age * edema, data = pbc, family = binomial)
pbc$randprob <- fitted(biasmodel)

if (is.null(pbc$albumin)) pbc$albumin <- pbc$alb ## pre2.9.0

dpbc <- svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, randomized))

model <- svycoxph(Surv(time, status > 0) ~ sex + protime + albumin + stage, design = dpbc)
svycox.display(model)
#> Stratified Independent Sampling design (with replacement)
#> svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
#>     randomized))
#> Stratified Independent Sampling design (with replacement)
#> svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
#>     randomized))
#> Stratified Independent Sampling design (with replacement)
#> svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
#>     randomized))
#> Stratified Independent Sampling design (with replacement)
#> svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
#>     randomized))
#> Stratified Independent Sampling design (with replacement)
#> svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
#>     randomized))
#> $table
#>               crude HR(95%CI)      crude P value adj. HR(95%CI)       
#> sex: f vs m   "0.62 (0.4,0.97)"    "0.038"       "0.55 (0.33,0.9)"    
#> protime       "1.37 (1.09,1.72)"   "0.006"       "1.52 (1.2,1.91)"    
#> albumin       "0.2 (0.14,0.29)"    "< 0.001"     "0.31 (0.2,0.47)"    
#> stage: ref.=1 NA                   NA            NA                   
#>    2          "5.67 (0.77,41.78)"  "0.089"       "10.94 (1.01,118.54)"
#>    3          "9.78 (1.37,69.94)"  "0.023"       "17.03 (1.69,171.6)" 
#>    4          "22.89 (3.2,163.47)" "0.002"       "22.56 (2.25,226.41)"
#>               adj. P value
#> sex: f vs m   "0.017"     
#> protime       "< 0.001"   
#> albumin       "< 0.001"   
#> stage: ref.=1 NA          
#>    2          "0.049"     
#>    3          "0.016"     
#>    4          "0.008"     
#> 
#> $metric
#>                        [,1] [,2] [,3] [,4]
#> <NA>                     NA   NA   NA   NA
#> No. of observations  312.00   NA   NA   NA
#> No. of events        144.00   NA   NA   NA
#> AIC                 1483.12   NA   NA   NA
#> 
#> $caption
#> [1] "Survey cox model on time ('time') to event ('status > 0')"

Sub-group analysis for Cox/svycox model

library(dplyr)
lung %>%
  mutate(
    status = as.integer(status == 1),
    sex = factor(sex),
    kk = factor(as.integer(pat.karno >= 70)),
    kk1 = factor(as.integer(pat.karno >= 60))
  ) -> lung

# TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data=lung, line = T)

## Survey data
library(survey)
data.design <- svydesign(id = ~1, data = lung, weights = ~1)
# TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data = data.design, line = F)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.