The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Example Analysis using jointCompRisk

Wenqing Zhang

Part I: CIF Inference

raw <- read.csv("main_df.csv")
long <- read.csv("long_df.csv")
# 1) Standard CIF:
mydata_std <- prep_data_cif(
  data             = raw,
  ID               = "ID",
  TimeToRecovery   = "TimeToRecovery",
  TimeToDeath      = "TimeToDeath",
  Recov_Censoring  = "RecoveryCensoringIndicator",
  Death_Censoring  = "DeathCensoringIndicator",
  Treatment        = "Treatment"
)


res_std <- do_cif_analysis(mydata_std, tau=15)
res_std$RMLT1$groups
##            Group Estimate        se   Lower95  Upper95
## 1 Group1 (trt=1) 3.760347 0.4769287 2.8255670 4.695128
## 2 Group2 (trt=0) 1.167820 0.3530140 0.4759129 1.859728
res_std$RMLT1$contrast
##     Contrast Estimate        se  Lower95  Upper95      p_value
## 1 Difference 2.592527 0.5933632 1.429535 3.755519 1.246981e-05
res_std$RMLT2$groups
##            Group Estimate        se   Lower95  Upper95
## 1 Group1 (trt=1) 1.082678 0.3039021 0.4870301 1.678326
## 2 Group2 (trt=0) 2.743811 0.4912417 1.7809770 3.706644
res_std$RMLT2$contrast
##     Contrast  Estimate       se   Lower95    Upper95  p_value
## 1 Difference -1.661133 0.577646 -2.793319 -0.5289465 1.995969
# Prepare weighted CIF data with updated variable names
prepped_w <- prep_data_weighted_cif(
  data_main = raw,
  data_long = long,

  wID_main              = "ID",
  wTimeToRecovery_main  = "TimeToRecovery",
  wTimeToDeath_main     = "TimeToDeath",
  wRecov_Censoring_main = "RecoveryCensoringIndicator",
  wDeath_Censoring_main = "DeathCensoringIndicator",
  wTreatment_main       = "Treatment",
  wBaselineScore_main   = "BaselineScore",
  
  wID_long              = "PersonID",
  wADY_long             = "RelativeDay",
  wScore_long           = "OrdinalScore",

  wStates_death         = c(4,5,6,7), 
  wWeights_death        = c(2,1.5,1,0.5),
  wStates_discharge     = c(4,5,6,7),
  wWeights_discharge    = c(0.5,1,1.5,2)
)

# Run Weighted CIF analysis at tau=15
res_w15 <- do_weighted_cif_analysis(prepped_w, tau=15)
res_w15$WRMLT1$groups
##            Group Estimate        se   Lower95  Upper95
## 1 Group1 (trt=1) 3.826796 0.6299957 2.5920047 5.061588
## 2 Group2 (trt=0) 1.152394 0.4870215 0.1978317 2.106956
res_w15$WRMLT1$contrast
##     Contrast Estimate        se  Lower95  Upper95      p_value
## 1 Difference 2.674403 0.7962942 1.113666 4.235139 0.0007834951
res_w15$WRMLT2$groups
##            Group Estimate        se   Lower95  Upper95
## 1 Group1 (trt=1) 1.732806 0.5549883 0.6450291 2.820583
## 2 Group2 (trt=0) 3.075604 0.6740444 1.7544772 4.396731
res_w15$WRMLT2$contrast
##     Contrast  Estimate        se   Lower95   Upper95  p_value
## 1 Difference -1.342798 0.8731253 -3.054124 0.3685276 1.875932
# Run Weighted CIF analysis at tau=29
res_w29 <- do_weighted_cif_analysis(prepped_w, tau=29)
res_w29$WRMLT1$groups
##            Group  Estimate       se  Lower95   Upper95
## 1 Group1 (trt=1) 10.555337 1.393451 7.824174 13.286500
## 2 Group2 (trt=0)  3.759667 1.052295 1.697169  5.822164
res_w29$WRMLT1$contrast
##     Contrast Estimate       se  Lower95  Upper95      p_value
## 1 Difference 6.795671 1.746147 3.373223 10.21812 9.949938e-05
res_w29$WRMLT2$groups
##            Group Estimate       se  Lower95   Upper95
## 1 Group1 (trt=1) 5.091130 1.216564 2.706664  7.475595
## 2 Group2 (trt=0) 8.486232 1.469823 5.605378 11.367085
res_w29$WRMLT2$contrast
##     Contrast  Estimate       se   Lower95   Upper95  p_value
## 1 Difference -3.395102 1.907986 -7.134753 0.3445499 1.924829

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.