The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Common Join Issues and Solutions

Gilles Colling

2026-01-19

Overview

This vignette catalogs common join problems and shows how joinspy detects and resolves them. Each issue includes detection methods and recommended solutions.

Issue 1: Duplicate Keys

Problem: When one or both tables have duplicate keys, joins multiply rows unexpectedly.

orders <- data.frame(
  customer_id = c(1, 2, 2, 3),
  amount = c(100, 50, 75, 200)
)

addresses <- data.frame(
  customer_id = c(1, 2, 2, 3),
  address = c("NYC", "LA", "SF", "Chicago")
)

join_spy(orders, addresses, by = "customer_id")
#> 
#> ── Join Diagnostic Report ──────────────────────────────────────────────────────
#> Join columns: customer_id
#> 
#> ── Table Summary ──
#> 
#> Left table: Rows: 4 Unique keys: 3 Duplicate keys: 1 NA keys: 0
#> Right table: Rows: 4 Unique keys: 3 Duplicate keys: 1 NA keys: 0
#> 
#> ── Match Analysis ──
#> 
#> Keys in both: 3
#> Keys only in left: 0
#> Keys only in right: 0
#> Match rate (left): "100%"
#> 
#> ── Issues Detected ──
#> 
#> ! Left table has 1 duplicate key(s) affecting 2 rows - may cause row multiplication
#> ! Right table has 1 duplicate key(s) affecting 2 rows - may cause row multiplication
#> 
#> ── Expected Row Counts ──
#> 
#> inner_join: 6
#> left_join: 6
#> right_join: 6
#> full_join: 6

Detection: join_spy() reports duplicate counts and expected row multiplication.

Solution: Aggregate or filter duplicates before joining.

key_duplicates(orders, by = "customer_id")
#>   customer_id amount .n_duplicates
#> 2           2     50             2
#> 3           2     75             2
key_duplicates(addresses, by = "customer_id")
#>   customer_id address .n_duplicates
#> 2           2      LA             2
#> 3           2      SF             2

Issue 2: Whitespace

Problem: Invisible leading/trailing spaces prevent matches.

sales <- data.frame(
  product = c("Widget", "Gadget ", " Gizmo"),
  units = c(10, 20, 30),
  stringsAsFactors = FALSE
)

inventory <- data.frame(
  product = c("Widget", "Gadget", "Gizmo"),
  stock = c(100, 200, 300),
  stringsAsFactors = FALSE
)

join_spy(sales, inventory, by = "product")
#> 
#> ── Join Diagnostic Report ──────────────────────────────────────────────────────
#> Join columns: product
#> 
#> ── Table Summary ──
#> 
#> Left table: Rows: 3 Unique keys: 3 Duplicate keys: 0 NA keys: 0
#> Right table: Rows: 3 Unique keys: 3 Duplicate keys: 0 NA keys: 0
#> 
#> ── Match Analysis ──
#> 
#> Keys in both: 1
#> Keys only in left: 2
#> Keys only in right: 2
#> Match rate (left): "33.3%"
#> 
#> ── Issues Detected ──
#> 
#> ! Left column 'product' has 2 value(s) with leading/trailing whitespace
#> ℹ 2 near-match(es) found (e.g., 'Gadget ' ~ 'Gadget', ' Gizmo' ~ 'Gizmo') - possible typos?
#> 
#> ── Expected Row Counts ──
#> 
#> inner_join: 1
#> left_join: 3
#> right_join: 3
#> full_join: 5

Detection: join_spy() flags whitespace issues in the Issues section.

Solution: Use join_repair() or trimws().

sales_fixed <- join_repair(sales, by = "product")
#> ✔ Repaired 2 value(s)
key_check(sales_fixed, inventory, by = "product")
#> ✔ Key check passed: no issues detected

Issue 3: Case Mismatches

Problem: Keys differ only by case (“ABC” vs “abc”).

left <- data.frame(
  code = c("ABC", "def", "GHI"),
  value = 1:3,
  stringsAsFactors = FALSE
)

right <- data.frame(
  code = c("abc", "DEF", "ghi"),
  label = c("A", "D", "G"),
  stringsAsFactors = FALSE
)

join_spy(left, right, by = "code")
#> 
#> ── Join Diagnostic Report ──────────────────────────────────────────────────────
#> Join columns: code
#> 
#> ── Table Summary ──
#> 
#> Left table: Rows: 3 Unique keys: 3 Duplicate keys: 0 NA keys: 0
#> Right table: Rows: 3 Unique keys: 3 Duplicate keys: 0 NA keys: 0
#> 
#> ── Match Analysis ──
#> 
#> Keys in both: 0
#> Keys only in left: 3
#> Keys only in right: 3
#> Match rate (left): "0%"
#> 
#> ── Issues Detected ──
#> 
#> ! 3 key(s) would match if case-insensitive (e.g., 'ABC' vs 'abc')
#> 
#> ── Expected Row Counts ──
#> 
#> inner_join: 0
#> left_join: 3
#> right_join: 3
#> full_join: 6

Detection: join_spy() detects case mismatches when keys would match if case-insensitive.

Solution: Standardize case with join_repair().

repaired <- join_repair(left, right, by = "code", standardize_case = "upper")
#> ✔ Repaired 3 value(s)
key_check(repaired$x, repaired$y, by = "code")
#> ✔ Key check passed: no issues detected

Issue 4: NA Keys

Problem: NA values in key columns never match (by design in R).

orders <- data.frame(
  customer_id = c(1, NA, 3, NA),
  amount = c(100, 200, 300, 400)
)

customers <- data.frame(
  customer_id = c(1, 2, 3, NA),
  name = c("Alice", "Bob", "Carol", "Unknown")
)

join_spy(orders, customers, by = "customer_id")
#> 
#> ── Join Diagnostic Report ──────────────────────────────────────────────────────
#> Join columns: customer_id
#> 
#> ── Table Summary ──
#> 
#> Left table: Rows: 4 Unique keys: 2 Duplicate keys: 0 NA keys: 2
#> Right table: Rows: 4 Unique keys: 3 Duplicate keys: 0 NA keys: 1
#> 
#> ── Match Analysis ──
#> 
#> Keys in both: 2
#> Keys only in left: 0
#> Keys only in right: 1
#> Match rate (left): "100%"
#> 
#> ── Issues Detected ──
#> 
#> ! Left table has 2 NA key(s) - these will not match
#> ! Right table has 1 NA key(s) - these will not match
#> 
#> ── Expected Row Counts ──
#> 
#> inner_join: 2
#> left_join: 4
#> right_join: 4
#> full_join: 6

Detection: join_spy() reports NA counts in the Table Summary.

Solution: Handle NA values explicitly—remove them or replace with a placeholder.

# Option 1: Remove rows with NA keys
orders_clean <- orders[!is.na(orders$customer_id), ]

# Option 2: Replace NA with placeholder
orders$customer_id[is.na(orders$customer_id)] <- -999

Issue 5: No Matches

Problem: Inner join returns zero rows when you expected matches.

system_a <- data.frame(
  user_id = c("USR001", "USR002", "USR003"),
  score = c(85, 90, 78),
  stringsAsFactors = FALSE
)

system_b <- data.frame(
  user_id = c("1", "2", "3"),
  department = c("Sales", "Marketing", "Engineering"),
  stringsAsFactors = FALSE
)

report <- join_spy(system_a, system_b, by = "user_id")

Detection: Match analysis shows 0% match rate.

Solution: Create a mapping table or transform keys to a common format.

# Extract numeric part
system_a$user_num <- gsub("USR0*", "", system_a$user_id)
key_check(system_a, system_b, by = c("user_num" = "user_id"))
#> ✔ Key check passed: no issues detected

Issue 6: Many-to-Many Explosion

Problem: Both tables have duplicate keys, causing exponential row growth.

order_items <- data.frame(
  order_id = c(1, 1, 2, 2, 2),
  item = c("A", "B", "C", "D", "E")
)

order_payments <- data.frame(
  order_id = c(1, 1, 2, 2),
  payment = c("CC1", "CC2", "Cash", "Check")
)

report <- join_spy(order_items, order_payments, by = "order_id")

Detection: Expected row counts show multiplication (inner join = 10 rows from 9 source rows).

Solution: Aggregate one table first, or use check_cartesian().

check_cartesian(order_items, order_payments, by = "order_id")
#> ✔ No Cartesian product risk (expansion factor: 2x)
# Enforce cardinality to catch this
join_strict(order_items, order_payments, by = "order_id", expect = "1:m")
#> Error:
#> ! Cardinality violation: expected 1:m but found m:m
#>   Left duplicates: 2, Right duplicates: 2

Issue 7: Type Mismatches

Problem: Keys have different types (numeric vs character).

orders <- data.frame(
  product_id = c(1, 2, 3),
  quantity = c(10, 20, 30)
)

products <- data.frame(
  product_id = c("1", "2", "3"),
  name = c("Widget", "Gadget", "Gizmo"),
  stringsAsFactors = FALSE
)

join_spy(orders, products, by = "product_id")
#> 
#> ── Join Diagnostic Report ──────────────────────────────────────────────────────
#> Join columns: product_id
#> 
#> ── Table Summary ──
#> 
#> Left table: Rows: 3 Unique keys: 3 Duplicate keys: 0 NA keys: 0
#> Right table: Rows: 3 Unique keys: 3 Duplicate keys: 0 NA keys: 0
#> 
#> ── Match Analysis ──
#> 
#> Keys in both: 3
#> Keys only in left: 0
#> Keys only in right: 0
#> Match rate (left): "100%"
#> 
#> ── Issues Detected ──
#> 
#> ! Type mismatch: 'product_id' is numeric, 'product_id' is character - may cause unexpected results
#> 
#> ── Expected Row Counts ──
#> 
#> inner_join: 3
#> left_join: 3
#> right_join: 3
#> full_join: 3

Detection: join_spy() flags type coercion warnings.

Solution: Convert to matching types before joining.

orders$product_id <- as.character(orders$product_id)
key_check(orders, products, by = "product_id")
#> ✔ Key check passed: no issues detected

Issue 8: Empty Strings vs NA

Problem: Empty strings ("") and NA behave differently in joins.

left <- data.frame(
  id = c("A", "", "C"),
  value = 1:3,
  stringsAsFactors = FALSE
)

right <- data.frame(
  id = c("A", "B", ""),
  label = c("Alpha", "Beta", "Empty"),
  stringsAsFactors = FALSE
)

join_spy(left, right, by = "id")
#> 
#> ── Join Diagnostic Report ──────────────────────────────────────────────────────
#> Join columns: id
#> 
#> ── Table Summary ──
#> 
#> Left table: Rows: 3 Unique keys: 3 Duplicate keys: 0 NA keys: 0
#> Right table: Rows: 3 Unique keys: 3 Duplicate keys: 0 NA keys: 0
#> 
#> ── Match Analysis ──
#> 
#> Keys in both: 2
#> Keys only in left: 1
#> Keys only in right: 1
#> Match rate (left): "66.7%"
#> 
#> ── Issues Detected ──
#> 
#> ℹ Left column 'id' has 1 empty string(s) - these match other empty strings but not NA
#> ℹ Right column 'id' has 1 empty string(s) - these match other empty strings but not NA
#> 
#> ── Expected Row Counts ──
#> 
#> inner_join: NA
#> left_join: NA
#> right_join: NA
#> full_join: NA

Detection: join_spy() warns about empty strings in keys.

Solution: Convert empty strings to NA with join_repair().

left_fixed <- join_repair(left, by = "id", empty_to_na = TRUE)
#> ✔ Repaired 1 value(s)
left_fixed$id
#> [1] "A" NA  "C"

Using join_strict() for Safety

When you know the expected cardinality, use join_strict() to fail fast:

products <- data.frame(id = 1:3, name = c("A", "B", "C"))
prices <- data.frame(id = c(1, 2, 2, 3), price = c(10, 20, 25, 30))

join_strict(products, prices, by = "id", expect = "1:1")
#> Error:
#> ! Cardinality violation: expected 1:1 but found 1:m
#>   Left duplicates: 0, Right duplicates: 1

Automatic Detection with detect_cardinality()

Let joinspy determine the actual relationship:

orders <- data.frame(id = c(1, 1, 2, 3), item = c("A", "B", "C", "D"))
customers <- data.frame(id = 1:3, name = c("Alice", "Bob", "Carol"))

detect_cardinality(orders, customers, by = "id")
#> ℹ Detected cardinality: "m:1"
#> Left duplicates: 1 key(s)

Quick Reference

Issue Detection Solution
Duplicates join_spy(), key_duplicates() Aggregate or filter
Whitespace join_spy(), key_check() join_repair(), trimws()
Case mismatch join_spy() join_repair(standardize_case=)
NA keys join_spy() Table Summary Remove or replace
No matches join_spy() Match Analysis Check key format/mapping
M:M explosion join_spy(), check_cartesian() Aggregate first
Type mismatch join_spy() Convert types
Empty strings join_spy() join_repair(empty_to_na=TRUE)

Troubleshooting Workflow

  1. Run join_spy(x, y, by) to get a comprehensive diagnostic
  2. Check the Issues section for detected problems
  3. Use key_duplicates() to locate specific duplicate rows
  4. Apply join_repair() to fix whitespace/case/encoding issues
  5. Use join_strict() to enforce expected cardinality
  6. After joining, use join_explain() to understand row count changes

See Also

Session Info

sessionInfo()
#> R version 4.5.2 (2025-10-31 ucrt)
#> Platform: x86_64-w64-mingw32/x64
#> Running under: Windows 11 x64 (build 26200)
#> 
#> Matrix products: default
#>   LAPACK version 3.12.1
#> 
#> locale:
#> [1] LC_COLLATE=C                          
#> [2] LC_CTYPE=English_United States.utf8   
#> [3] LC_MONETARY=English_United States.utf8
#> [4] LC_NUMERIC=C                          
#> [5] LC_TIME=English_United States.utf8    
#> 
#> time zone: Europe/Luxembourg
#> tzcode source: internal
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] joinspy_0.7.3
#> 
#> loaded via a namespace (and not attached):
#>  [1] digest_0.6.39   R6_2.6.1        fastmap_1.2.0   xfun_0.55      
#>  [5] glue_1.8.0      cachem_1.1.0    knitr_1.51      htmltools_0.5.9
#>  [9] rmarkdown_2.30  lifecycle_1.0.5 cli_3.6.5       vctrs_0.7.0    
#> [13] sass_0.4.10     jquerylib_0.1.4 compiler_4.5.2  tools_4.5.2    
#> [17] pillar_1.11.1   evaluate_1.0.5  bslib_0.9.0     yaml_2.3.12    
#> [21] otel_0.2.0      rlang_1.1.7     jsonlite_2.0.0

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.