The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Package of the German Book "Statistik mit R und RStudio" by Joerg grosse Schlarmann
Description: All datasets and functions used in the german book "Statistik mit R und RStudio" by grosse Schlarmann (2010-2024) https://www.produnis.de/R/.
Version: 1.0.7
Date: 2024-06-24
Language: de-de
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Depends: R (≥ 3.5.0)
Encoding: UTF-8
Imports: statip, jsonlite, httr, curl
LazyData: true
RoxygenNote: 7.3.1
NeedsCompilation: no
Packaged: 2024-06-24 12:35:49 UTC; produnis
Author: Jörg große Schlarmann [aut, cre]
Maintainer: Jörg große Schlarmann <schlarmann@produnis.de>
Repository: CRAN
Date/Publication: 2024-06-24 14:20:01 UTC

Datatable of the Faktorenbogen Example for factor analysis

Description

Datatable of the Faktorenbogen Example for factor analysis

Usage

data(Faktorenbogen)

Format

A data frame with 150 observations in 14 variables

Details

Variables in the dataset:

Source

https://www.produnis.de/R/


compute confidence intervall for binomial proportions

Description

returns borders and length of confidence intervall for binomial proportions

Usage

KIbinomial_a(p, n, alpha)

Arguments

p

proportion obeserved

n

number of observations

alpha

error niveau

Value

confidence intervall

Examples

KIbinomial_a(0.35, 150, 0.05)


compute confidence intervall for difference of binomial proportions

Description

returns borders and length of confidence intervall for difference of binomial proportions

Usage

KIbinomial_u(p1, n1, p2, n2, alpha)

Arguments

p1

proportion obeserved in group 1

n1

number of observations in group 1

p2

proportion obeserved in group 2

n2

number of observations in group 2

alpha

error niveau

Value

confidence intervall

Examples

KIbinomial_u(0.25, 100, 0.4, 150, 0.05)


compute confidence intervall for mean of normal distributed data

Description

returns borders and length of confidence intervall for mean of normal distributed data

Usage

KInormal_a(xquer, s, n, alpha)

Arguments

xquer

mean of obeserved data

s

standard deviation of observed data

n

number of observations

alpha

error niveau

Value

confidence intervall

Examples

KInormal_a(400, 20, 100, 0.05)


compute confidence intervall for mean of normal distributed data

Description

returns a data.frame with borders and length of confidence intervall for mean of normal distributed data

Usage

KInormal_u(x1, s1, n1, x2, s2, n2, alpha)

Arguments

x1

mean of obeserved data in group 1

s1

standard deviation of observed data in group 1

n1

number of observations in group 1

x2

mean of obeserved data in group 2

s2

standard deviation of observed data in group 2

n2

number of observations in group 2

alpha

error niveau

Value

data.frame of confidence intervall

Examples

KInormal_u(2.22, 0.255, 13, 2.7, 0.306, 10 , 0.05)


Datatable of the SuperMario Example for Friedman-ANOVA

Description

Datatable of the SuperMario Example for Friedman-ANOVA

Usage

data(MarioANOVA)

Format

A data frame with 47 observations in 8 variables

Details

Variables in the dataset:

Source

https://www.produnis.de/R/


Datatable of the Messwiederholung Example for ANOVA

Description

Datatable of the Messwiederholung Example for ANOVA

Usage

data(Messwiederholung)

Format

A data frame with 200 observations in 4 variables

Details

Variables in the dataset:

Source

https://www.produnis.de/R/


Dataset of the German Nachtwachen study

Description

Dataset of the German Nachtwachen study

Usage

data(Nachtwachen)

Format

A data frame with 276 observations in 37 variables.

Source

https://www.produnis.de/R/


Datatable of an Ordinal Sample

Description

Datatable of an Ordinal Sample

Usage

data(OrdinalSample)

Format

A data frame with 415 observations in 4 variables.

Details

Variables in the dataset:

Source

https://www.produnis.de/R/


Matrix of Pflegeberufe by Isfort et al. 2018

Description

Matrix of Pflegeberufe by Isfort et al. 2018

Usage

data(Pflegeberufe)

Format

A matrix with 9 cols (years) and 5 rows (nursing profession).

Author(s)

Isfort et al. 2018 (Pflegethermometer)

Source

https://www.produnis.de/R/


Compare Linear Models

Description

This function fits and compares several models (linear, quadratic, cubic, exponential, logarithmic, sigmoidal, power, logistic) to a given set of dependent and independent variables. It returns either a summary of the models with their R-squared values or predicted values based on the models.

Usage

compare.lm(dep, ind, predict = FALSE, steps = 0.01)

Arguments

dep

A numeric vector representing the dependent variable.

ind

A numeric vector representing the independent variable.

predict

Logical. If TRUE, the function returns predicted values for each model. Defaults to FALSE.

steps

Numeric. The step size for generating x-values for predictions. Only used if predict is TRUE. Defaults to 0.01.

Value

A data frame. If predict is FALSE, returns a data frame with the R-squared values for each model. If predict is TRUE, returns a data frame with the original data and predicted values for each model.

Examples

x <- c(6, 9, 12, 14, 30, 35, 40, 47, 51, 55, 60)
y <- c(14, 28, 50, 70, 89, 94, 90, 75, 59, 44, 27)
compare.lm(y, x)
compare.lm(y, x, predict=TRUE)


Datatable of the epa Example

Description

Datatable of the epa Example

Usage

data(epa)

Format

A data frame with 620 observations in 6 variables

Details

Variables in the dataset:

Source

https://www.produnis.de/R/


create a frequency table

Description

returns a frequency table with absolute and relative frequencies and cumulated frequencies

Usage

freqTable(werte)

Arguments

werte

factor with obeserved data

Value

dataframe table

Examples

x <- ceiling(stats::rnorm(20))
freqTable(x)


create a tibble with kenngroessen

Description

returns a tibble with all kenngroessen

Usage

kenngroessen(werte)

Arguments

werte

numeric vector

Value

tibble with all kenngroessen

Examples

x <- ceiling(stats::rnorm(20))
kenngroessen(x)


get longitude and altitude from an address using OpenStreetMap's API at http://nominatim.openstreetmap.org

Description

get longitude and altitude from an address using OpenStreetMap's API at http://nominatim.openstreetmap.org

Usage

lon.lat.osm(address = NULL)

Arguments

address

a character of an address

Value

a data.frame containig "address", "lon", "lat"

Examples

lon.lat.osm("Eiffeltower")


Dataset of a work sampling study

Description

Dataset of a work sampling study

Usage

data(mma)

Format

A data frame with 9768 observations in 6 variables.

Details

Variables in the dataset:

Source

https://www.produnis.de/R/


Dataset of the German Nachtwachen study with labelled variables

Description

Dataset of the German Nachtwachen study, labelled version

Usage

data(nw)

Format

A data frame with 276 observations in 37 variables.

Source

https://www.produnis.de/R/


Pairwise Chi-Square Tests

Description

This function performs pairwise Chi-Square tests for two factors.

Usage

pairwise.chisq.test(A, B, p.adjust.method = "bonferroni")

Arguments

A

A factor with two or moew levels. The first variable.

B

A factor with two or more levels. The second variable.

p.adjust.method

A string specifying the method for adjusting p-values. Default is "bonferroni".

Details

This function creates all possible pairs of levels of factor B and performs a Chi-Square test for each pair of B on variable A. The p-values are adjusted according to the specified method. #' This function is created for educational purposes only. For exact p-values, consider using reporttools::pairwise.fisher.test().

Value

A data frame with the results of the pairwise Chi-Square tests. Includes the groups, Chi-Square statistic, degrees of freedom, p-values, adjusted p-values, and significance stars.

Examples

set.seed(123)
A <- factor(sample(c("Male", "Female"), 100, replace = TRUE))
B <- factor(sample(c("Location1", "Location2", "Location3"), 100, replace = TRUE))
pairwise.chisq.test(A, B, "holm")

Dataset of the PF8 example.

Description

This is the dataset of the PF8 example.

Usage

data(pf8)

Format

A data frame with 731 observations in 16 variables.

Source

https://www.produnis.de/R/


compute sensitivity and specifity

Description

returns sensitivity specifity, negativ-predictive-value, postitiv-predictive-value

Usage

sens.spec(rp, rn, fp, fn)

Arguments

rp

number of true-positive (richtig-positiv)

rn

number of true-negative (richtig-negativ)

fp

number of false-positive (falsch-positiv)

fn

number of false-negative (falsch-negativ)

Value

a data.frame with sens, spec, ppw, npw

Examples

sens.spec(40, 17, 85, 4)


z-Transformation by given numbers, with z = (x - mu) / sd

Description

z-Transformation by given numbers, with z = (x - mu) / sd

Usage

ztrans(x, mu = 0, sd = 1)

Arguments

x

a value to transform

mu

the given mu

sd

the given standard deviation

Value

the z-transformed value

Examples

ztrans(120,mu=118,sd=20)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.