The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In the tutorial about how to handle replication units, we learned how to incorporate replicates in a network model. However, the parameter values estimated by the model were shared across all replicates.
In this tutorial, we’ll learn how we can use replicates to estimate the fixed effect of some covariates on the model parameters when the covariates vary across replicates.
We will use a simulated dataset quite similar to the one from the replication tutorial. The modelled foodweb has three compartments:
NH4
), which is enriched in \(^{15}\)N at the beginning of the
experimentThe experiment is done in two aquariums as before, but this time one aquarium is exposed to light while the other is kept in the dark. How does this treatment affect nitrogen flow? Note that in a real life experiment, we would need more than one replicate per level of the light treatment (otherwise we could not differentiate between treatment effect and replicate effect) - the example in this tutorial is kept excessively simple to focus on the package interface to specify fixed effects.
library(isotracer)
library(tidyverse)
The simulated data we use in this example can be loaded into your R session by running the code below:
<- tibble::tribble(
exp ~time.day, ~species, ~biomass, ~prop15N, ~treatment,
0, "NH4", 0.205, 0.739, "light",
2, "NH4", 0.232, 0.403, "light",
4, "NH4", NA, 0.199, "light",
6, "NH4", NA, 0.136, "light",
8, "NH4", 0.306, NA, "light",
10, "NH4", 0.323, 0.0506, "light",
0, "algae", 0.869, 0.00305, "light",
2, "algae", NA, 0.0875, "light",
4, "algae", 0.83, 0.131, "light",
6, "algae", 0.706, NA, "light",
10, "algae", 0.666, 0.0991, "light",
0, "daphnia", 2.13, 0.00415, "light",
2, "daphnia", 1.99, NA, "light",
4, "daphnia", 1.97, 0.0122, "light",
6, "daphnia", NA, 0.0284, "light",
8, "daphnia", NA, 0.0439, "light",
10, "daphnia", 1.9, 0.0368, "light",
0, "NH4", 0.474, 0.98, "dark",
2, "NH4", 0.455, 0.67, "dark",
4, "NH4", 0.595, 0.405, "dark",
6, "NH4", NA, 0.422, "dark",
10, "NH4", 0.682, 0.252, "dark",
0, "algae", 1.06, 0.00455, "dark",
2, "algae", 1, 0.0637, "dark",
4, "algae", 0.862, 0.0964, "dark",
6, "algae", NA, 0.222, "dark",
8, "algae", NA, 0.171, "dark",
10, "algae", 0.705, 0.182, "dark",
0, "daphnia", 1.19, 0.00315, "dark",
4, "daphnia", 1.73, 0.0204, "dark",
6, "daphnia", 1.75, NA, "dark",
8, "daphnia", 1.54, 0.0598, "dark",
10, "daphnia", 1.65, 0.0824, "dark"
)
As shown in the dataset, the first aquarium is exposed to light and the second one is kept in the dark. We trace the nitrogen fluxes by adding \(^{15}\)N-enriched ammonium at the beginning of the experiment. Let’s visualize the data:
library(ggplot2)
library(gridExtra)
<- ggplot(exp, aes(x = time.day, y = biomass, col = species)) +
p1 geom_point() + ggtitle("Biomass data") + ylab("Biomass (mg N)") +
facet_wrap(~ treatment)
<- ggplot(exp, aes(x = time.day, y = prop15N, col = species)) +
p2 geom_point() + ggtitle("Heavy isotope proportions") + ylab("Proportion of 15N") +
facet_wrap(~ treatment)
grid.arrange(p1, p2, nrow = 2)
We separate the initial conditions and the observations:
<- exp %>% filter(time.day == 0)
inits <- exp %>% filter(time.day > 0) obs
We build the network model, using treatment
as a
grouping variable:
<- new_networkModel() %>%
m set_topo("NH4 -> algae -> daphnia -> NH4") %>%
set_init(inits, comp = "species", size = "biomass", prop = "prop15N",
group_by = "treatment") %>%
set_obs(obs, time = "time.day")
m
## # A tibble: 2 × 5
## topology initial observations parameters group
## <list> <list> <list> <list> <list>
## 1 <topology [3 × 3]> <tibble [3 × 3]> <tibble [14 × 4]> <tibble [8 × 2]> <chr [1]>
## 2 <topology [3 × 3]> <tibble [3 × 3]> <tibble [13 × 4]> <tibble [8 × 2]> <chr [1]>
The network model object m
has two rows, corresponding
to the two treatments:
groups(m)
## # A tibble: 2 × 1
## treatment
## <chr>
## 1 light
## 2 dark
If we go on and run the MCMC now, the two treatments will share the
same parameter values and will only act as simple replicates, without
any covariate effect. We need to specify that the treatment
grouping variable is to be used as a covariate for some of the
parameters estimated by the model.
We specify covariates with the add_covariates()
function
and the formula syntax parameters ~ covariates
where
parameters
is the list of parameters affected by one or
several covariates specified in covariates
.
For example, to tell the model that the nitrogren flux from NH\(_4^+\) to algae should depend on the treatment, we type:
<- m %>% add_covariates(upsilon_NH4_to_algae ~ treatment) m
Let’s have a look at the model parameters at this stage:
params(m)
## # A tibble: 9 × 2
## in_model value
## <chr> <dbl>
## 1 eta NA
## 2 lambda_algae NA
## 3 lambda_daphnia NA
## 4 lambda_NH4 NA
## 5 upsilon_algae_to_daphnia NA
## 6 upsilon_daphnia_to_NH4 NA
## 7 upsilon_NH4_to_algae|dark NA
## 8 upsilon_NH4_to_algae|light NA
## 9 zeta NA
We can see that there are now two entries for
upsilon_NH4_to_algae
:
upsilon_NH4_to_algae|light
and
upsilon_NH4_to_algae|dark
. All the other parameters are
unaffected by the treatment covariate.
We can specify covariate specifications sequentially. For example, we can now tell the model that the nitrogen flux from algae to Daphnia also depends on the treatment:
<- m %>% add_covariates(upsilon_algae_to_daphnia ~ treatment) m
and we can have a detailed look at the current covariate specification by looking at the parameter mapping in each replicate:
$parameters m
## [[1]]
## # A tibble: 8 × 2
## in_replicate in_model
## <chr> <chr>
## 1 eta eta
## 2 lambda_algae lambda_algae
## 3 lambda_daphnia lambda_daphnia
## 4 lambda_NH4 lambda_NH4
## 5 upsilon_algae_to_daphnia upsilon_algae_to_daphnia|light
## 6 upsilon_daphnia_to_NH4 upsilon_daphnia_to_NH4
## 7 upsilon_NH4_to_algae upsilon_NH4_to_algae|light
## 8 zeta zeta
##
## [[2]]
## # A tibble: 8 × 2
## in_replicate in_model
## <chr> <chr>
## 1 eta eta
## 2 lambda_algae lambda_algae
## 3 lambda_daphnia lambda_daphnia
## 4 lambda_NH4 lambda_NH4
## 5 upsilon_algae_to_daphnia upsilon_algae_to_daphnia|dark
## 6 upsilon_daphnia_to_NH4 upsilon_daphnia_to_NH4
## 7 upsilon_NH4_to_algae upsilon_NH4_to_algae|dark
## 8 zeta zeta
Here, we can see that upsilon_NH4_to_algae
and
upsilon_algae_to_daphnia
within each replicate depend on
light
and dark
, while all the other parameters
are shared across replicates.
The formula syntax in add_covariates()
is quite
versatile and can perform partial matching. For example, if we want
all the loss rates to depend on the treatment, we can
use:
<- m %>% add_covariates(lambda ~ treatment) m
and all the parameters containing the string lambda
will
be affected in one go:
$parameters m
## [[1]]
## # A tibble: 8 × 2
## in_replicate in_model
## <chr> <chr>
## 1 eta eta
## 2 lambda_algae lambda_algae|light
## 3 lambda_daphnia lambda_daphnia|light
## 4 lambda_NH4 lambda_NH4|light
## 5 upsilon_algae_to_daphnia upsilon_algae_to_daphnia|light
## 6 upsilon_daphnia_to_NH4 upsilon_daphnia_to_NH4
## 7 upsilon_NH4_to_algae upsilon_NH4_to_algae|light
## 8 zeta zeta
##
## [[2]]
## # A tibble: 8 × 2
## in_replicate in_model
## <chr> <chr>
## 1 eta eta
## 2 lambda_algae lambda_algae|dark
## 3 lambda_daphnia lambda_daphnia|dark
## 4 lambda_NH4 lambda_NH4|dark
## 5 upsilon_algae_to_daphnia upsilon_algae_to_daphnia|dark
## 6 upsilon_daphnia_to_NH4 upsilon_daphnia_to_NH4
## 7 upsilon_NH4_to_algae upsilon_NH4_to_algae|dark
## 8 zeta zeta
Note: To avoid partial matching when calling
add_covariates()
, you can use the argument
regexpr = FALSE
.
To affect all parameters, one can use .
on the left-hand
side of the formula:
<- m %>% add_covariates(. ~ treatment) m
Finally, to specify that a parameter does not depend on any covariate
and is shared across replicates, one can use 1
on the
right-hand side of the formula:
<- m %>% add_covariates(zeta ~ 1) m
which means that we can remove all fixed effects for all parameters with:
<- m %>% add_covariates(. ~ 1) m
For this tutorial, let’s assume that all nitrogen fluxes across
compartments can depend on the light treatment. The parameters
corresponding to those fluxes are the ones starting with
upsilon
:
<- m %>% add_covariates(upsilon ~ treatment)
m params(m)
## # A tibble: 11 × 2
## in_model value
## <chr> <dbl>
## 1 eta NA
## 2 lambda_algae NA
## 3 lambda_daphnia NA
## 4 lambda_NH4 NA
## 5 upsilon_algae_to_daphnia|dark NA
## 6 upsilon_algae_to_daphnia|light NA
## 7 upsilon_daphnia_to_NH4|dark NA
## 8 upsilon_daphnia_to_NH4|light NA
## 9 upsilon_NH4_to_algae|dark NA
## 10 upsilon_NH4_to_algae|light NA
## 11 zeta NA
We quickly set some reasonable vague priors for the particular model at hand:
<- set_priors(m, normal_p(0, 4), "")
m priors(m)
## # A tibble: 11 × 2
## in_model prior
## <chr> <list>
## 1 eta <trun_normal(mean=0,sd=4)>
## 2 lambda_algae <trun_normal(mean=0,sd=4)>
## 3 lambda_daphnia <trun_normal(mean=0,sd=4)>
## 4 lambda_NH4 <trun_normal(mean=0,sd=4)>
## 5 upsilon_algae_to_daphnia|dark <trun_normal(mean=0,sd=4)>
## 6 upsilon_algae_to_daphnia|light <trun_normal(mean=0,sd=4)>
## 7 upsilon_daphnia_to_NH4|dark <trun_normal(mean=0,sd=4)>
## 8 upsilon_daphnia_to_NH4|light <trun_normal(mean=0,sd=4)>
## 9 upsilon_NH4_to_algae|dark <trun_normal(mean=0,sd=4)>
## 10 upsilon_NH4_to_algae|light <trun_normal(mean=0,sd=4)>
## 11 zeta <trun_normal(mean=0,sd=4)>
We run the MCMC as usual:
<- run_mcmc(m, iter = 2000)
run plot(run)
# Note: the figure below only shows a few of the traceplots for vignette concision
and we do a posterior predictive check:
<- predict(m, run)
predictions plot(predictions, facet_row = c("group", "type"),
facet_col = "compartment",
scale = "all")
Let’s see if the upsilon parameters were actually different between the light and dark treatments:
summary(run %>% select(upsilon))
##
## Iterations = 1001:2000
## Thinning interval = 1
## Number of chains = 4
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## upsilon_algae_to_daphnia|dark 0.12338 0.015711 0.0002484 0.00028100
## upsilon_algae_to_daphnia|light 0.13911 0.019829 0.0003135 0.00033573
## upsilon_daphnia_to_NH4|dark 0.05696 0.009938 0.0001571 0.00018649
## upsilon_daphnia_to_NH4|light 0.04064 0.004668 0.0000738 0.00008513
## upsilon_NH4_to_algae|dark 0.08584 0.011417 0.0001805 0.00021184
## upsilon_NH4_to_algae|light 0.28320 0.025936 0.0004101 0.00043828
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## upsilon_algae_to_daphnia|dark 0.09509 0.11274 0.12249 0.13311 0.15639
## upsilon_algae_to_daphnia|light 0.10417 0.12546 0.13811 0.15057 0.18115
## upsilon_daphnia_to_NH4|dark 0.04036 0.05008 0.05598 0.06266 0.07987
## upsilon_daphnia_to_NH4|light 0.03187 0.03749 0.04039 0.04359 0.05057
## upsilon_NH4_to_algae|dark 0.06614 0.07779 0.08508 0.09266 0.11150
## upsilon_NH4_to_algae|light 0.23373 0.26632 0.28228 0.29921 0.33807
Looking at a table of numbers is not the easiest way to visualize the
differences between parameter values. One could take advantage of the
bayesplot
package for a more visual output:
library(bayesplot)
mcmc_intervals(run %>% select(upsilon)) +
coord_trans(x = "log10")
Based on this plot, it looks like only the rates from ammonium to
algae (upsilon_NH4_to_algae
) actually differ between the
light
and the dark
treatments.
Let’s check this more rigorously. One nice thing about Bayesian MCMC
is that we can combine the traces of primary parameters
sampled during the MCMC to generate posteriors for derived
parameters. We want to see the posterior for the ratio between
the uptake rate coefficients for NH4 -> algae
in the
light and in the dark treatments:
<- (run[, "upsilon_NH4_to_algae|light"] /
ratio_upsilons_NH4_algae "upsilon_NH4_to_algae|dark"])
run[, plot(ratio_upsilons_NH4_algae)
As we can see above, the posterior for the ratio \(\frac{\upsilon_{NH4 \rightarrow algae}|light}{\upsilon_{NH4 \rightarrow algae}|dark}\) is far from one. We can check that with the numerical summary:
summary(ratio_upsilons_NH4_algae)
##
## Iterations = 1001:2000
## Thinning interval = 1
## Number of chains = 4
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## 3.358536 0.551588 0.008721 0.009415
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## 2.393 2.981 3.319 3.695 4.563
The model tells us that the algae uptake ammonium more rapidly in the light treatment. What about the nitrogen flows between algae and Daphnia? Are the uptake rate coefficients estimated in the light and the dark treatments different?
<- (run[, "upsilon_algae_to_daphnia|light"] /
ratio_upsilons_algae_daphnia "upsilon_algae_to_daphnia|dark"])
run[, plot(ratio_upsilons_algae_daphnia)
For this comparison, the posterior of the ratio overlaps one quite generously: the model does not support an effect of the light/dark treatment on the nitrogen flux between algae and Daphnia.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.