The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Items Response Theory Analysis with Steps and Interpretation
Version: 0.4.1
Maintainer: Hari Purnomo Susanto <haripurnomosusanto@gmail.com>
Description: Dichotomous and polytomous data analysis and their scoring using the unidimensional Item Response Theory model (Chalmers (2012) <doi:10.18637/jss.v048.i06>) with user-friendly graphic User Interface. Suitable for beginners who are learning item response theory.
Imports: DT, mirt, psych, readxl,shiny,shinyWidgets,shinycssloaders,rmarkdown,bs4Dash,gt,diagram,writexl,mirtCAT,WrightMap
License: GPL (≥ 3)
Encoding: UTF-8
NeedsCompilation: no
URL: https://github.com/SusantoHP/irtawsi
BugReports: https://github.com/SusantoHP/irtawsi/issues
Packaged: 2024-06-26 16:16:47 UTC; Hari PS
Author: Hari Purnomo Susanto ORCID iD [aut, cre], Heri Retnawati ORCID iD [ctb], Agus Maman Abadi ORCID iD [ctb], Haryanto Haryanto ORCID iD [ctb], Hasan Djidu ORCID iD [ctb]
Repository: CRAN
Date/Publication: 2024-06-26 18:10:02 UTC

Items Response Theory Analysis with Steps and Interpretation

Description

Dichotomous and polytomous data analysis and their scoring using the unidimensional Item Response Theory model (Chalmers (2012) <doi:10.18637/jss.v048.i06>) with user-friendly graphic User Interface. Suitable for beginners who are learning item response theory.

Usage

irtawsi()

Value

No values are returned, launches 'shiny' interface

References

Cai, L. & Monro, S. (2014). A new statistic for evaluating item response theory models for ordinal data. National Center for Research on Evaluation, Standards, & Student Testing. Technical Report.

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

DeMars, C. (2010). Item Response Theory. doi:10.1093/acprof:oso/9780195377033.001.0001

Guenole, N., & Brown, A. (2014). The consequences of ignoring measurement invariance for path coefficients in structural equation models. Frontiers in Psychology, 5. doi:10.3389/fpsyg.2014.00980

Maydeu-Olivares, A. (2013). Goodness-of-Fit Assessment of Item Response Theory Models. Measurement: Interdisciplinary Research & Perspective, 11 (3), 71–101. doi:10.1080/15366367.2013.831680

Maydeu-Olivares, A. (2014). Evaluating the Fit of IRT Models. In S. P. Reise & D. A. Revicki (Eds.), Handbook of Item Response Theory Modeling 129–145. Routledge. doi:10.4324/9781315736013-15

Nguyen, T. H., Han, H.-R., Kim, M. T., & Chan, K. S. (2014). An Introduction to Item Response Theory for Patient-Reported Outcome Measurement. The Patient - Patient-Centered Outcomes Research, 7 (1), 23–35. doi:10.1007/s40271-013-0041-0

Paek, I., & Cole, K. (2019). Using R for Item Response Theory Model Applications. Routledge. doi:10.4324/9781351008167

Petersen, M. A. (2005). Introduction to Nonparametric Item Response Theory. Quality of Life Research, 14 (4), 1201–1202. doi:10.1007/s11136-005-1259-7

Retnawati, H. (2015). Karakteristik Butir Tes dan Analisisnya. Uny, 53(5).

Toland, M. D. (2014). Practical Guide to Conducting an Item Response Theory Analysis. The Journal of Early Adolescence, 34 (1), 120–151. doi:10.1177/0272431613511332

Xu, J., Zhang, Q., & Yang, Y. (2020). Impact of violations of measurement invariance in cross-lagged panel mediation models. Behavior Research Methods, 52 (6), 2623–2645. doi:10.3758/s13428-020-01426-z

Examples

if(interactive()){
## Run this code for launching the Graphic User Interface
irtawsi()
}

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.