The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Quick Start Guide

Emre Gönülateş

2024-02-20

library(irt)

Basic Objects

irt package contains many useful functions commonly used in psychometrics.

Item parameters are defined within three main objects types:

Item

In order to create an Item object, the psychometric model and item parameter values is sufficient. Specifying an item_id field is required if Item will be used within an Itempool or Testlet.

3PL Model

A three parameter logistic model item (3PL) requires a, b and c parameters to be specified:

item1 <- item(a = 1.2, b = -.8, c = .33, model = "3PL")
item1
#> A '3PL' item.
#> Model:   3PL (Three-Parameter Logistic Model)
#> Model Parameters:
#>   a = 1.2
#>   b = -0.8
#>   c = 0.33
#>   D = 1
#> 
#> --------------------------

a is the item discrimination, b is the item difficulty and c is the pseudo-guessing parameter.

By default, the value of scaling constant D is specified as 1. But it can be overridden:

item1 <- item(a = 1.2, b = -.8, c = .33, D = 1.7, model = "3PL")
item1
#> A '3PL' item.
#> Model:   3PL (Three-Parameter Logistic Model)
#> Model Parameters:
#>   a = 1.2
#>   b = -0.8
#>   c = 0.33
#>   D = 1.7
#> 
#> --------------------------

item_id and content field can be specified as well:

item1 <- item(a = 1.2, b = -.8, c = .33, D = 1.7, model = "3PL", 
              item_id = "ITM384", content = "Quadratic Equations")
item1
#> A '3PL' item.
#> Item ID:      ITM384
#> Model:   3PL (Three-Parameter Logistic Model)
#> Content: Quadratic Equations
#> Model Parameters:
#>   a = 1.2
#>   b = -0.8
#>   c = 0.33
#>   D = 1.7
#> 
#> --------------------------

Additional fields can be added through misc field:

item1 <- item(a = 1.2, b = -.8, c = .33, D = 1.7, model = "3PL", 
              item_id = "ITM384", content = "Quadratic Equations", 
              misc = list(key = "A", 
                          enemies = c("ITM664", "ITM964"), 
                          seed_year = 2020, 
                          target_grade = "11")
              )
item1
#> A '3PL' item.
#> Item ID:      ITM384
#> Model:   3PL (Three-Parameter Logistic Model)
#> Content: Quadratic Equations
#> Model Parameters:
#>   a = 1.2
#>   b = -0.8
#>   c = 0.33
#>   D = 1.7
#> 
#> Misc: 
#>   key: "A"
#>   enemies: "ITM664", "ITM964"
#>   seed_year: 2020
#>   target_grade: "11"
#> --------------------------

An item characteristic curve can be plotted using plot function:

plot(item1)

plot of chunk unnamed-chunk-6

Rasch Model

Rasch model item requires b parameter to be specified:

item2 <- item(b = -.8, model = "Rasch")
item2
#> A 'Rasch' item.
#> Model:   Rasch (Rasch Model)
#> Model Parameters:
#>   b = -0.8
#> 
#> --------------------------

For Rasch model, D parameter cannot be specified.

1PL Model

A one-parameter model item requires b parameter to be specified:

item3 <- item(b = -.8, D = 1.7, model = "1PL")
item3
#> A '1PL' item.
#> Model:   1PL (One-Parameter Logistic Model)
#> Model Parameters:
#>   b = -0.8
#>   D = 1.7
#> 
#> --------------------------

2PL Model

A two-parameter model item requires a and b parameters to be specified:

item4 <- item(a = 1.2, b = -.8, D = 1.702, model = "2PL")
item4
#> A '2PL' item.
#> Model:   2PL (Two-Parameter Logistic Model)
#> Model Parameters:
#>   a = 1.2
#>   b = -0.8
#>   D = 1.702
#> 
#> --------------------------

4PL Model

A four-parameter model item requires a, b, c and d parameters to be specified:

item5 <- item(a = 1.06, b = 1.76, c = .13, d = .98, model = "4PL", 
              item_id = "itm-5")
item5
#> A '4PL' item.
#> Item ID:      itm-5
#> Model:   4PL (Four-Parameter Logistic Model)
#> Model Parameters:
#>   a = 1.06
#>   b = 1.76
#>   c = 0.13
#>   d = 0.98
#>   D = 1
#> 
#> --------------------------

d is the upper-asymptote parameter.

Graded Response Model (GRM)

A Graded Response model item requires a and b parameters to be specified. b parameters is ascending vector of threshold parameters:

item6 <- item(a = 1.22, b = c(-1.9, -0.37, 0.82, 1.68), model = "GRM", 
              item_id = "itm-6")
item6
#> A 'GRM' item.
#> Item ID:      itm-6
#> Model:   GRM (Graded Response Model)
#> Model Parameters:
#>   a = 1.22
#>   b = -1.9;  -0.37;  0.82;  1.68
#>   D = 1
#> 
#> --------------------------
plot(item6)

plot of chunk unnamed-chunk-11

D parameter can also be specified.

Generalized Partial Credit Model (GPCM)

A Generalized Partial Credit model item requires a and b parameters to be specified. b parameters is ascending vector of threshold parameters:

item7 <- item(a = 1.22, b = c(-1.9, -0.37, 0.82, 1.68), D = 1.7, model = "GPCM", 
              item_id = "itm-7")
item7
#> A 'GPCM' item.
#> Item ID:      itm-7
#> Model:   GPCM (Generalized Partial Credit Model)
#> Model Parameters:
#>   a = 1.22
#>   b = -1.9;  -0.37;  0.82;  1.68
#>   D = 1.7
#> 
#> --------------------------

Partial Credit Model (PCM)

A Partial Credit model item requires b parameters to be specified. b parameters is ascending vector of threshold parameters:

item8 <- item(b = c(-1.9, -0.37, 0.82, 1.68), model = "PCM")
item8
#> A 'PCM' item.
#> Model:   PCM (Partial Credit Model)
#> Model Parameters:
#>   b = -1.9;  -0.37;  0.82;  1.68
#> 
#> --------------------------

Generating Random Item Parameters

An item with random item parameters can be generated using generate_item function:

generate_item("3PL")
#> A '3PL' item.
#> Model:   3PL (Three-Parameter Logistic Model)
#> Model Parameters:
#>   a = 0.4768
#>   b = 0.5809
#>   c = 0.0192
#>   D = 1
#> 
#> Misc: 
#>   key: "D"
#>   possible_options: "A", "B", "C", "D"
#> --------------------------
generate_item("2PL")
#> A '2PL' item.
#> Model:   2PL (Two-Parameter Logistic Model)
#> Model Parameters:
#>   a = 0.9363
#>   b = -2.2367
#>   D = 1
#> 
#> Misc: 
#>   key: "D"
#>   possible_options: "A", "B", "C", "D"
#> --------------------------
generate_item("Rasch")
#> A 'Rasch' item.
#> Model:   Rasch (Rasch Model)
#> Model Parameters:
#>   b = 1.0838
#> 
#> Misc: 
#>   key: "C"
#>   possible_options: "A", "B", "C", "D"
#> --------------------------
generate_item("GRM")
#> A 'GRM' item.
#> Model:   GRM (Graded Response Model)
#> Model Parameters:
#>   a = 1.5541
#>   b = -2.1701;  -0.5095;  0.3358
#>   D = 1
#> 
#> --------------------------
# The number of categories of polytomous items can be specified:
generate_item("GPCM", n_categories = 5)
#> A 'GPCM' item.
#> Model:   GPCM (Generalized Partial Credit Model)
#> Model Parameters:
#>   a = 1.1223
#>   b = -0.2897;  0.5058;  0.8368;  1.5294
#>   D = 1
#> 
#> --------------------------

Testlet

A testlet is simply a collection of Item objects:

item1 <- item(a = 1.2, b = -.8, c = .33, D = 1.7, model = "3PL", 
              item_id = "ITM384", content = "Quadratic Equations")
item2 <- item(a = 0.75, b = 1.8, c = .21, D = 1.7, model = "3PL", 
              item_id = "ITM722", content = "Quadratic Equations")
item3 <- item(a = 1.06, b = 1.76, c = .13, d = .98, model = "4PL", 
              item_id = "itm-5")
t1 <- testlet(c(item1, item2, item3))
t1
#> An object of class 'Testlet'.
#> Model:   BTM
#> 
#> Item List:
#> 
#>   item_id model     a     b     c     d     D content            
#>   <chr>   <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>              
#> 1 ITM384  3PL    1.2  -0.8   0.33 NA      1.7 Quadratic Equations
#> 2 ITM722  3PL    0.75  1.8   0.21 NA      1.7 Quadratic Equations
#> 3 itm-5   4PL    1.06  1.76  0.13  0.98   1   <NA>

An testlet_id field is required if testlet will be used in an item pool.

t1 <- testlet(item1, item2, item3, testlet_id = "T1")
t1
#> An object of class 'Testlet'.
#> Testlet ID:      T1
#> Model:   BTM
#> 
#> Item List:
#> 
#>   item_id model     a     b     c     d     D content            
#>   <chr>   <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>              
#> 1 ITM384  3PL    1.2  -0.8   0.33 NA      1.7 Quadratic Equations
#> 2 ITM722  3PL    0.75  1.8   0.21 NA      1.7 Quadratic Equations
#> 3 itm-5   4PL    1.06  1.76  0.13  0.98   1   <NA>

Itempool

An Itempool object is the most frequently used object type in irt package. It is a collection of Item and Testlet objects.

item1 <- generate_item("3PL", item_id = "I1") 
item2 <- generate_item("3PL", item_id = "I2") 
item3 <- generate_item("3PL", item_id = "I3") 
ip1 <- itempool(item1, item2, item3)

Item pools can be composed of items from different psychometric models and testlets:

item4 <- generate_item("GRM", item_id = "I4") 
item5 <- generate_item("3PL", item_id = "T1-I1") 
item6 <- generate_item("3PL", item_id = "T1-I2") 
t1 <- testlet(item5, item6, item_id = "T1")
ip2 <- itempool(item1, item2, item3, item4, t1)

Most of the time item pools are generated using data frames:

n_item <- 6 # Number of items
ipdf <- data.frame(a = rlnorm(n_item), b = rnorm(n_item), 
                   c = runif(n_item, 0, .3))
ip3 <- itempool(ipdf)
ip3
#> An object of class 'Itempool'.
#> Model of items: 3PL
#> D = 1
#> 
#>   item_id      a      b      c
#>   <chr>    <dbl>  <dbl>  <dbl>
#> 1 Item_1   0.458 -1.15  0.289 
#> 2 Item_2   0.742  0.193 0.0461
#> 3 Item_3   0.825 -0.737 0.0190
#> 4 Item_4   1.20  -0.692 0.0372
#> 5 Item_5   1.14  -0.333 0.231 
#> 6 Item_6  16.3    1.06  0.187

# Scaling constant can be specified
ip4 <- itempool(ipdf, D = 1.7)
ip4
#> An object of class 'Itempool'.
#> Model of items: 3PL
#> D = 1.7
#> 
#>   item_id      a      b      c
#>   <chr>    <dbl>  <dbl>  <dbl>
#> 1 Item_1   0.458 -1.15  0.289 
#> 2 Item_2   0.742  0.193 0.0461
#> 3 Item_3   0.825 -0.737 0.0190
#> 4 Item_4   1.20  -0.692 0.0372
#> 5 Item_5   1.14  -0.333 0.231 
#> 6 Item_6  16.3    1.06  0.187
ipdf <- data.frame(
  item_id = c("Item_1", "Item_2", "Item_3", "Item_4", "Item_5", "Item_6"), 
  model = c("3PL", "3PL", "3PL", "GPCM", "GPCM", "GPCM"), 
  a = c(1.0253, 1.3609, 1.6617, 1.096, 0.9654, 1.3995), 
  b1 = c(NA, NA, NA, -1.112, -0.1709, -1.1324), 
  b2 = c(NA, NA, NA, -0.4972, 0.2778, -0.5242), 
  b3 = c(NA, NA, NA, -0.0077, 0.9684, NA), 
  D = c(1.7, 1.7, 1.7, 1.7, 1.7, 1.7), 
  b = c(0.7183, -0.4107, -1.5452, NA, NA, NA), 
  c = c(0.0871, 0.0751, 0.0589, NA, NA, NA), 
  content = c("Geometry", "Algebra", "Algebra", "Geometry", "Algebra", 
              "Algebra") 
)

ip5 <- itempool(ipdf)

Itempool objects can also be converted to a data frame:

as.data.frame(ip2)
#>   item_id testlet_id model      a       b      c      b1     b2     b3 D  key
#> 1      I1       <NA>   3PL 0.9027 -0.0463 0.1484      NA     NA     NA 1    C
#> 2      I2       <NA>   3PL 1.2123  0.7124 0.2154      NA     NA     NA 1    D
#> 3      I3       <NA>   3PL 1.0751  1.1153 0.2230      NA     NA     NA 1    D
#> 4      I4       <NA>   GRM 1.1190      NA     NA -1.5937 0.3181 1.3589 1 <NA>
#> 5   T1-I1  Testlet_1   3PL 1.2368 -0.5051 0.1002      NA     NA     NA 1    D
#> 6   T1-I2  Testlet_1   3PL 0.8357  0.8960 0.0016      NA     NA     NA 1    C
#>   possible_options
#> 1       A, B, C, D
#> 2       A, B, C, D
#> 3       A, B, C, D
#> 4               NA
#> 5       A, B, C, D
#> 6       A, B, C, D

Basic IRT Functions

Probability

Probability of correct response (for dichotomous items) and probability of each category (for polytomous items) can be calculated using prob function:

item1 <- generate_item("3PL")
theta <- 0.84
# The probability of correct and incorrect response for `item1` at theta = 0.84
prob(item1, theta)
#>              0         1
#> [1,] 0.3103985 0.6896015

# Multiple theta values
prob(item1, theta = c(-1, 1))
#>              0         1
#> [1,] 0.7168617 0.2831383
#> [2,] 0.2783276 0.7216724

# Polytomous items:
item2 <- generate_item(model = "GPCM")
prob(item2, theta = 1)
#>              0         1         2         3
#> [1,] 0.0181105 0.1707979 0.5781817 0.2329099
prob(item2, theta = c(-1, 0, 1))
#>              0         1          2           3
#> [1,] 0.6553320 0.2958140 0.04792984 0.000924134
#> [2,] 0.2115960 0.4365783 0.32333048 0.028495280
#> [3,] 0.0181105 0.1707979 0.57818171 0.232909901

Probability of correct response (or category) for each item in an item pool can be calculated as:

ip <- generate_ip(model = "3PL", n = 7)
ip
#> An object of class 'Itempool'.
#> Model of items: 3PL
#> D = 1
#> possible_options = c("A", "B", "C", "D")
#> 
#>   item_id     a      b      c key  
#>   <chr>   <dbl>  <dbl>  <dbl> <chr>
#> 1 Item_1  0.716  0.217 0.253  D    
#> 2 Item_2  0.874  0.861 0.214  A    
#> 3 Item_3  1.86   0.974 0.231  C    
#> 4 Item_4  0.840 -0.258 0.160  A    
#> 5 Item_5  0.911  1.98  0.266  C    
#> 6 Item_6  1.46   0.296 0.177  A    
#> 7 Item_7  0.634  0.870 0.0836 B
prob(ip, theta = 0)
#>                0         1
#> Item_1 0.4024527 0.5975473
#> Item_2 0.5344001 0.4655999
#> Item_3 0.6608946 0.3391054
#> Item_4 0.3744612 0.6255388
#> Item_5 0.6299144 0.3700856
#> Item_6 0.4988078 0.5011922
#> Item_7 0.5815182 0.4184818
# When there are multiple theta values, a list where each element corresponds
# to a theta value returned. 
prob(ip, theta = c(-2, 0, 1))
#> [[1]]
#>                0         1
#> Item_1 0.6201176 0.3798824
#> Item_2 0.7266214 0.2733786
#> Item_3 0.7662261 0.2337739
#> Item_4 0.6817440 0.3182560
#> Item_5 0.7147542 0.2852458
#> Item_6 0.7946347 0.2053653
#> Item_7 0.7886959 0.2113041
#> 
#> [[2]]
#>                0         1
#> Item_1 0.4024527 0.5975473
#> Item_2 0.5344001 0.4655999
#> Item_3 0.6608946 0.3391054
#> Item_4 0.3744612 0.6255388
#> Item_5 0.6299144 0.3700856
#> Item_6 0.4988078 0.5011922
#> Item_7 0.5815182 0.4184818
#> 
#> [[3]]
#>                0         1
#> Item_1 0.2714881 0.7285119
#> Item_2 0.3691917 0.6308083
#> Item_3 0.3754810 0.6245190
#> Item_4 0.2165827 0.7834173
#> Item_5 0.5203189 0.4796811
#> Item_6 0.2171664 0.7828336
#> Item_7 0.4393019 0.5606981

Item characteristic curves (ICC) can be plotted:

# Plot ICC of each item in the item pool
plot(ip)

plot of chunk unnamed-chunk-24


# Plot test characteristic curve
plot(ip, type = "tcc")

plot of chunk unnamed-chunk-24

Information

Information value of an item at a given \(\theta\) value can also be calculated:

item1 <- generate_item("3PL")
info(item1, theta = -2)
#> [1] 0.02406235

# Multiple theta values
info(item1, theta = c(-1, 1))
#> [1] 0.04919700 0.08960753

# Polytomous items:
item2 <- generate_item(model = "GPCM")
info(item2, theta = 1)
#> [1] 0.5427016
info(item2, theta = c(-1, 0, 1))
#> [1] 0.8909455 1.1019585 0.5427016

Information values for each item in an item pool can be calculated as:

ip <- generate_ip(model = "3PL", n = 7)
ip
#> An object of class 'Itempool'.
#> Model of items: 3PL
#> D = 1
#> possible_options = c("A", "B", "C", "D")
#> 
#>   item_id     a      b      c key  
#>   <chr>   <dbl>  <dbl>  <dbl> <chr>
#> 1 Item_1  0.833 -0.951 0.0354 C    
#> 2 Item_2  0.934  0.970 0.184  B    
#> 3 Item_3  1.39  -0.112 0.288  A    
#> 4 Item_4  1.43   0.257 0.218  C    
#> 5 Item_5  1.02  -0.638 0.0673 B    
#> 6 Item_6  1.11  -0.100 0.246  A    
#> 7 Item_7  1.50   1.12  0.220  D
info(ip, theta = 0)
#>         Item_1    Item_2    Item_3    Item_4    Item_5    Item_6    Item_7
#> [1,] 0.1413498 0.1001709 0.2730636 0.2959566 0.2114078 0.1887165 0.1056933
info(ip, theta = c(-2, 0, 1))
#>          Item_1     Item_2     Item_3      Item_4    Item_5     Item_6
#> [1,] 0.12822222 0.00994675 0.01750681 0.008938492 0.1221402 0.02964977
#> [2,] 0.14134978 0.10017088 0.27306358 0.295956630 0.2114078 0.18871654
#> [3,] 0.09134627 0.15085687 0.18723309 0.285300661 0.1277243 0.15170483
#>           Item_7
#> [1,] 0.000624366
#> [2,] 0.105693322
#> [3,] 0.346033174

Information functions can be plotted:

# Plot information function of each item
plot_info(ip)

plot of chunk unnamed-chunk-27

# Plot test information function
plot_info(ip, tif = TRUE)

plot of chunk unnamed-chunk-27

Ability Estimation

For a given set of item parameters and item responses, the ability ($\theta$) estimates can be calculated using est_ability function.

# Generate an item pool 
ip <- generate_ip(model = "2PL", n = 10)
true_theta <- rnorm(5)
resp <- sim_resp(ip = ip, theta = true_theta, output = "matrix")

# Calculate raw scores
est_ability(resp = resp, ip = ip, method = "sum_score")
#> $est
#> S1 S2 S3 S4 S5 
#>  4  3  3  5  7 
#> 
#> $se
#> S1 S2 S3 S4 S5 
#> NA NA NA NA NA
# Estimate ability using maximum likelihood estimation:
est_ability(resp = resp, ip = ip, method = "ml")
#> $est
#>        S1        S2        S3        S4        S5 
#> -0.941935 -1.394198 -1.664643 -0.145236  0.732982 
#> 
#> $se
#>       S1       S2       S3       S4       S5 
#> 0.778740 0.776946 0.792755 0.816266 0.887546
# Estimate ability using EAP estimation:
est_ability(resp = resp, ip = ip, method = "eap")
#> $est
#>        S1        S2        S3        S4        S5 
#> -0.570637 -0.863875 -1.034963 -0.068463  0.442611 
#> 
#> $se
#>       S1       S2       S3       S4       S5 
#> 0.626353 0.623287 0.623245 0.637943 0.655944
# Estimate ability using EAP estimation with a different prior 
# (prior mean = 0, prior standard deviation = 2):
est_ability(resp = resp, ip = ip, method = "eap", prior_pars = c(0, 2))
#> $est
#>        S1        S2        S3        S4        S5 
#> -0.804940 -1.226069 -1.479286 -0.086785  0.681779 
#> 
#> $se
#>       S1       S2       S3       S4       S5 
#> 0.747158 0.752559 0.764971 0.768755 0.822592

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.