The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
irrICC is an R package that provides several functions for calculating various Intraclass Correlation Coefficients (ICC). This package follows closely the general framework of inter-rater and intra-rater reliability presented by Gwet (2014).
In this document, I like to show you how to obtain the confidence interval and the p-value associated with a particular Intraclass Correlation Coefficient (ICC) your previously obtained. To learn how to obtain the various ICCs implemented in this package, please refer to the User Guide.
Note that the package scales is used in this document for formating some numbers. But it not needed to run the irrICC package.
The following code gives us the inter-rater reliability coefficient of 0.252, the associated 95% confidence interval of (0.015,0.784). As for the p-value, the function pval.ICC1a() produces several p-values associated with various values of the null parameters rho.zero given by (0,0.1,0.3,0.5,0.7,0.9). Typically, researchers will calculate the p-value associated with 0 null value to test for statistical significance.
You can provide your own null values using the function pvals.ICC1a() whose default null value is 0. It’s why pvals.ICC1a(iccdata1) yields 0, 0.015.
icc1a.fn(iccdata1)
#> sig2s sig2e icc1a n r max.rep min.rep Mtot ov.mean
#> 1 1.761312 5.225529 0.2520899 5 4 3 1 40 5.2
ci.ICC1a(iccdata1)
#> lcb ucb
#> 1 0.01495456 0.7841262
pval.ICC1a(iccdata1)
#> rho.zero pval
#> 1 0.0 0.01533516
#> 2 0.1 0.13458658
#> 3 0.3 0.53041794
#> 4 0.5 0.81006323
#> 5 0.7 0.94659101
#> 6 0.9 0.99530941
pvals.ICC1a(iccdata1)
#> rho.zero pval
#> 1 0 0.01533516
The 95% confidence level is what is offered by default. Can we obtain a 90% confidence interval instead? The answer is yes. This is achieved as follows:
Now, suppose you want to compute p-values based on Model 1A for the null values 0.15,0.25, and 0.45. You would proceed as follows:
The following code gives us the intra-rater reliability coefficient of 0.562, the associated 95% confidence interval of (0,1). The function pval.ICC1b() gives you p-values for a predermined vector of null values (0.0,0.1,0.3,0.5,0.7,0.9). For example, the p-value associated with the null value 0.3 is given by 7.075e-02. If you want to supply your own null values you will need to use function pvals.ICC1b(), the default null value being 0.. Remember that Model 1B can only give you an intra-rater reliability coefficient. If you need an inter-rater reliability then you must use a different model.
icc1b.fn(iccdata1)
#> sig2r sig2e icc1b n r max.rep min.rep Mtot ov.mean
#> 1 4.32087 3.365846 0.5621217 5 4 3 1 40 5.2
ci.ICC1b(iccdata1)
#> lcb ucb
#> 1 0 1
pval.ICC1b(iccdata1)
#> rho.zero pval
#> 1 0.0 4.686342e-06
#> 2 0.1 1.386945e-03
#> 3 0.3 7.074659e-02
#> 4 0.5 3.142024e-01
#> 5 0.7 6.484932e-01
#> 6 0.9 9.301346e-01
pvals.ICC1b(iccdata1)
#> gam.zero pval
#> 1 0 4.686342e-06
Again, instead of the default 95% confidence interval, you may request a 90% confidence interval as follows:
P-values associated with an arbitrary vector of null values (0.15,0.25,0.45) are calculated as follows:
pvals.ICC1b(iccdata1,gam.zero = c(0.15,0.25,0.45))
#> gam.zero pval
#> 1 0.15 0.002962246
#> 2 0.25 0.020746475
#> 3 0.45 0.166885491
It follows that for the null value 0.25 you get p-value = 2.075e-02.
Under Model 2 with interaction, the confidence intervals and p-values are calculated as follows:
icc2.inter.fn(iccdata1)
#> sig2s sig2r sig2e sig2sr icc2r icc2a n r max.rep
#> 1 2.018593 4.281361 1.315476 0.4067361 0.251627 0.8360198 5 4 3
#> min.rep Mtot ov.mean
#> 1 1 40 5.2
ci.ICC2r.inter(iccdata1)
#> lcb ucb
#> 1 0.02191927 0.7792666
ci.ICC2a.inter(iccdata1)
#> lcb ucb
#> 1 0.5478536 0.9645078
pval.ICC2r.inter(iccdata1)
#> rho.zero pval
#> 1 0.0 0.0009601902
#> 2 0.1 0.1191859085
#> 3 0.3 0.5526437466
#> 4 0.5 0.8194818940
#> 5 0.7 0.9480505063
#> 6 0.9 0.9953334341
pvals.ICC2r.inter(iccdata1)
#> rho.zero pval
#> 1 0 0.0009601902
pvals.ICC2a.inter(iccdata1)
#> gam.zero pval
#> 1 0 2.306507e-05
The function ci.ICC2r.inter(iccdata1) produced the 95% confidence interval (0.022,0.779) associated with the inter-rater reliability coefficient ICCr = 0.252. If needed, change the confidence level to 90% for example ci.ICC2r.inter(iccdata1,conflev=0.90) to get (0.044,0.702).
The function ci.ICC2a.inter(iccdata1) produced the 95% confidence interval (0.548,0.965) associated with the intra-rater reliability coefficient ICCa = 0.836. If needed, change the confidence level to 90% for example ci.ICC2a.inter(iccdata1,conflev=0.90) to get (0.609,0.953).
The function pval.ICC2r.inter(iccdata1) produced a series of p-values associated with the inter-rater reliability for the 6 arbitrarily selected null values (0,0.1,0.3,0.5,0.7,0.9).
The function pvals.ICC2r.inter(iccdata1) can produce p-values associated with the inter-rater reliability for an arbitrary input vector of null values, the default value being 0. However if you want to compute the p-values for the 2 null values 0.25 and 0.45, it could be achieved as follows:
pvals.ICC2r.inter(iccdata1,rho.zero = c(0.25,0.45))
#> rho.zero pval
#> 1 0.25 0.4589435
#> 2 0.45 0.7689111
Under Model 2 without interaction, the confidence intervals and p-values are calculated as follows:
icc2.nointer.fn(iccdata1)
#> sig2s sig2r sig2e icc2r icc2a n r max.rep min.rep Mtot
#> 1 2.090769 4.34898 1.598313 0.2601086 0.801157 5 4 3 1 40
#> ov.mean
#> 1 5.2
ci.ICC2r.nointer(iccdata1)
#> lcb ucb
#> 1 0.02869092 0.7805637
ci.ICC2a.nointer(iccdata1)
#> lcb ucb
#> 1 0.5505474 0.9639793
pvals.ICC2r.nointer(iccdata1)
#> rho.zero pval
#> 1 0 5.413829e-06
pvals.ICC2a.nointer(iccdata1)
#> gam.zero pval
#> 1 0 7.887974e-09
Under Model 3 with interaction, the confidence intervals and p-values are calculated as follows:
icc3.inter.fn(iccdata1)
#> sig2s sig2e sig2sr icc2r icc2a n r max.rep min.rep Mtot
#> 1 2.257426 1.315476 0.2238717 0.5749097 0.6535279 5 4 3 1 40
#> ov.mean
#> 1 5.2
ci.ICC3r.inter(iccdata1)
#> lcb ucb
#> 1 0.2162702 0.9222461
ci.ICC3a.inter(iccdata1)
#> lcb ucb
#> 1 0.142446 0.9091092
pvals.ICC3r.inter(iccdata1)
#> rho.zero pval
#> 1 0 0.0009601902
pvals.ICC3a.inter(iccdata1)
#> gam.zero pval
#> 1 0 0.008717435
Under Model 3 without interaction, the confidence intervals and p-values are calculated as follows:
icc3.nointer.fn(iccdata1)
#> sig2s sig2e icc2r icc2a n r max.rep min.rep Mtot ov.mean
#> 1 2.241792 1.470638 0.6038611 0.6038611 5 4 3 1 40 5.2
ci.ICC3r.nointer(iccdata1)
#> lcb ucb
#> 1 0.2494563 0.9248785
pvals.ICC3r.nointer(iccdata1)
#> rho.zero pval
#> 1 0 5.413829e-06
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.